##### Copyright 2019 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

卷积神经网络(Convolutional Neural Network, CNN)#

在 TensorFlow.org 上查看 在 Google Colab 中运行 在 GitHub 上查看源代码 下载笔记本

本教程展示了如何训练一个简单的卷积神经网络 (CNN) 来对 CIFAR 图像进行分类。由于本教程使用的是 Keras Sequential API,创建和训练模型只需要几行代码。

导入 TensorFlow#

import tensorflow as tf

from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

下载并准备 CIFAR10 数据集#

CIFAR10 数据集包含 10 类,共 60000 张彩色图片,每类图片有 6000 张。此数据集中 50000 个样例被作为训练集,剩余 10000 个样例作为测试集。类之间相互独立,不存在重叠的部分。

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# Normalize pixel values to be between 0 and 1
train_images, test_images = train_images / 255.0, test_images / 255.0

验证数据#

为了验证数据集看起来是否正确,我们绘制训练集中的前 25 张图像并在每张图像下方显示类名称:

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
               'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
    plt.subplot(5,5,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i])
    # The CIFAR labels happen to be arrays, 
    # which is why you need the extra index
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

构造卷积神经网络模型#

下方展示的 6 行代码声明了了一个常见卷积神经网络,由几个 Conv2DMaxPooling2D 层组成。

CNN 将形状为 (image_height, image_width, color_channels) 的张量作为输入,忽略批次大小。如果您不熟悉这些维度,color_channels 是指 (R,G,B)。在此示例中,您将配置 CNN 以处理形状为 (32, 32, 3) 的输入,即 CIFAR 图像的格式。您可以通过将参数 input_shape 传递给第一层来实现此目的。

model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))

到目前为止,模型的架构如下:

model.summary()

在上面的结构中,您可以看到每个 Conv2D 和 MaxPooling2D 层的输出都是一个三维的张量 (Tensor),其形状描述了 (height, width, channels)。越深的层中,宽度和高度都会收缩。每个 Conv2D 层输出的通道数量 (channels) 取决于声明层时的第一个参数(如:上面代码中的 32 或 64)。这样,由于宽度和高度的收缩,您便可以(从运算的角度)增加每个 Conv2D 层输出的通道数量 (channels)。

增加 Dense 层#

为了完成模型,您需要将卷积基(形状为 (4, 4, 64))的最后一个输出张量馈送到一个或多个 Dense 层以执行分类。Dense 层将向量作为输入(即 1 维),而当前输出为 3 维张量。首先,将 3 维输出展平(或展开)为 1 维,然后在顶部添加一个或多个 Dense 层。CIFAR 有 10 个输出类,因此使用具有 10 个输出的最终 Dense 层。

model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))

下面是模型的完整架构:

model.summary()

网络摘要显示 (4, 4, 64) 输出在经过两个 Dense 层之前被展平为形状为 (1024) 的向量。

编译并训练模型#

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

评估模型#

plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print(test_acc)

您的简单 CNN 的测试准确率已达到 70% 以上。对于只有几行的代码来说,效果不错!对于另一种 CNN 风格,请参阅适合专家的 TensorFlow 2 快速入门示例,此示例使用了 Keras 子类化 API 和 tf.GradientTape