##### Copyright 2021 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
迁移单工作进程多 GPU 训练#
在 TensorFlow.org 上查看 | 在 Google Colab 运行 | 在 Github 上查看源代码 | 下载笔记本 |
本指南演示了如何将单工作进程多 GPU 工作流从 TensorFlow 1 迁移到 TensorFlow 2。
要在一台机器上跨多个 GPU 执行同步训练,请执行以下操作:
在 TensorFlow 1 中,将
tf.estimator.Estimator
API 与tf.distribute.MirroredStrategy
一起使用。在 TensorFlow 2 中,可以使用 Keras Model.fit 或带有
tf.distribute.MirroredStrategy
的自定义训练循环。有关详情,请参阅使用 TensorFlow 进行分布式训练指南。
安装#
从导入和用于演示目的的简单数据集开始:
import tensorflow as tf
import tensorflow.compat.v1 as tf1
features = [[1., 1.5], [2., 2.5], [3., 3.5]]
labels = [[0.3], [0.5], [0.7]]
eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]
eval_labels = [[0.8], [0.9], [1.]]
TensorFlow 1:使用 tf.estimator.Estimator 进行单工作进程分布式训练#
此示例演示了单工作进程多 GPU 训练的 TensorFlow 1 规范工作流。您需要通过 tf.estimator.Estimator
的 config
参数设置分布策略 (tf.distribute.MirroredStrategy
):
def _input_fn():
return tf1.data.Dataset.from_tensor_slices((features, labels)).batch(1)
def _eval_input_fn():
return tf1.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
def _model_fn(features, labels, mode):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
strategy = tf1.distribute.MirroredStrategy()
config = tf1.estimator.RunConfig(
train_distribute=strategy, eval_distribute=strategy)
estimator = tf1.estimator.Estimator(model_fn=_model_fn, config=config)
train_spec = tf1.estimator.TrainSpec(input_fn=_input_fn)
eval_spec = tf1.estimator.EvalSpec(input_fn=_eval_input_fn)
tf1.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
TensorFlow 2:使用 Keras 进行单工作进程训练#
迁移到 TensorFlow 2 时,可以将 Keras API 与 tf.distribute.MirroredStrategy
一起使用。
如果您使用 tf.keras
API 进行模型构建,并使用 Keras Model.fit
进行训练,那么主要区别在于,这会在 Strategy.scope
的上下文中实例化 Keras 模型、优化器和指标,而不是为 tf.estimator.Estimator
定义 config
。
如果您需要使用自定义训练循环,请查看将 tf.distribute.Strategy 与自定义训练循环一起使用指南。
dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1)
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer=optimizer, loss='mse')
model.fit(dataset)
model.evaluate(eval_dataset, return_dict=True)
后续步骤#
要详细了解如何在 TensorFlow 2 中使用 tf.distribute.MirroredStrategy
进行分布式训练,请查看以下文档: