##### Copyright 2021 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
将 SessionRunHook 迁移到 Keras 回调#
在 TensorFlow.org 上查看 |
在 Google Colab 运行
|
在 Github 上查看源代码
|
下载笔记本 |
在 TensorFlow 1 中,要自定义训练的行为,可以使用 tf.estimator.SessionRunHook 和 tf.estimator.Estimator。本指南演示了如何使用 tf.keras.callbacks.Callback API 从 SessionRunHook 迁移到 TensorFlow 2 的自定义回调,此 API 与 Keras Model.fit 一起用于训练(以及 Model.evaluate 和 Model.predict)。您将通过实现 SessionRunHook 和 Callback 任务来学习如何做到这一点,此任务会在训练期间测量每秒的样本数。
回调的示例为检查点保存 (tf.keras.callbacks.ModelCheckpoint) 和 TensorBoard 摘要编写。Keras 回调是在内置 Keras Model.fit/Model.evaluate/Model.predict API 中的训练/评估/预测期间的不同点调用的对象。可以在 tf.keras.callbacks.Callback API 文档以及编写自己的回调和使用内置方法进行训练和评估(使用回调部分)指南中详细了解回调。
安装#
从导入和用于演示目的的简单数据集开始:
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import time
from datetime import datetime
from absl import flags
features = [[1., 1.5], [2., 2.5], [3., 3.5]]
labels = [[0.3], [0.5], [0.7]]
eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]
eval_labels = [[0.8], [0.9], [1.]]
TensorFlow 1:使用 tf.estimator API 创建自定义 SessionRunHook#
下面的 TensorFlow 1 示例展示了如何设置自定义 SessionRunHook 以在训练期间测量每秒的样本数。创建钩子 (LoggerHook) 后,将其传递给 tf.estimator.Estimator.train 的 hooks 参数。
def _input_fn():
return tf1.data.Dataset.from_tensor_slices(
(features, labels)).batch(1).repeat(100)
def _model_fn(features, labels, mode):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
class LoggerHook(tf1.train.SessionRunHook):
"""Logs loss and runtime."""
def begin(self):
self._step = -1
self._start_time = time.time()
self.log_frequency = 10
def before_run(self, run_context):
self._step += 1
def after_run(self, run_context, run_values):
if self._step % self.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
examples_per_sec = self.log_frequency / duration
print('Time:', datetime.now(), ', Step #:', self._step,
', Examples per second:', examples_per_sec)
estimator = tf1.estimator.Estimator(model_fn=_model_fn)
# Begin training.
estimator.train(_input_fn, hooks=[LoggerHook()])
TensorFlow 2:为 Model.fit 创建自定义 Keras 回调#
在 TensorFlow 2 中,当您使用内置 Keras Model.fit(或 Model.evaluate)进行训练/评估时,可以配置自定义 tf.keras.callbacks.Callback,然后将其传递给 Model.fit(或 Model.evaluate)的 callbacks 参数。(在编写自己的回调指南中了解详情。)
在下面的示例中,您将编写一个自定义 tf.keras.callbacks.Callback 来记录各种指标 – 它将测量每秒的样本数,这应该与前面的 SessionRunHook 示例中的指标相当。
class CustomCallback(tf.keras.callbacks.Callback):
def on_train_begin(self, logs = None):
self._step = -1
self._start_time = time.time()
self.log_frequency = 10
def on_train_batch_begin(self, batch, logs = None):
self._step += 1
def on_train_batch_end(self, batch, logs = None):
if self._step % self.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
examples_per_sec = self.log_frequency / duration
print('Time:', datetime.now(), ', Step #:', self._step,
', Examples per second:', examples_per_sec)
callback = CustomCallback()
dataset = tf.data.Dataset.from_tensor_slices(
(features, labels)).batch(1).repeat(100)
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer, "mse")
# Begin training.
result = model.fit(dataset, callbacks=[callback], verbose = 0)
# Provide the results of training metrics.
result.history
后续步骤#
通过下列方式详细了解回调:
API 文档:
tf.keras.callbacks.Callback指南:编写自己的回调
指南:使用内置方法进行训练和评估(使用回调部分)
此外,您可能还会发现下列与迁移相关的资源十分有用:
提前停止迁移指南:
tf.keras.callbacks.EarlyStopping是一个内置的提前停止回调TensorBoard 迁移指南:TensorBoard 支持跟踪和显示指标
在 TensorFlow.org 上查看
在 Google Colab 运行
在 Github 上查看源代码
下载笔记本