C-host 代码生成简介#
import set_env
import tvm
import tvm.testing
from tvm import te
from tvm.contrib import utils
from tvm.script import tir as T, ir as I
import numpy as np
add
c-host 代码生成#
nn = 1024
n = tvm.runtime.convert(nn)
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C")
s = te.create_schedule(C.op)
mhost = tvm.build(s, [A, B, C], "c", name="test_fadd")
print(mhost.get_source())
// tvm target: c -keys=cpu
#define TVM_EXPORTS
#include "tvm/runtime/c_runtime_api.h"
#include "tvm/runtime/c_backend_api.h"
#include <math.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C"
#endif
TVM_DLL int32_t test_fadd(void* args, int32_t* arg_type_ids, int32_t num_args, void* out_ret_value, int32_t* out_ret_tcode, void* resource_handle);
#ifdef __cplusplus
extern "C"
#endif
TVM_DLL int32_t test_fadd(void* args, int32_t* arg_type_ids, int32_t num_args, void* out_ret_value, int32_t* out_ret_tcode, void* resource_handle) {
int32_t A_code = arg_type_ids[0];
int32_t B_code = arg_type_ids[1];
int32_t C_code = arg_type_ids[2];
void* A = (((TVMValue*)args)[0].v_handle);
void* B = (((TVMValue*)args)[1].v_handle);
void* C = (((TVMValue*)args)[2].v_handle);
void* test_fadd_A_shape = (((DLTensor*)A)[0].shape);
void* test_fadd_A_strides = (((DLTensor*)A)[0].strides);
int32_t dev_id = (((DLTensor*)A)[0].device.device_id);
void* A_1 = (((DLTensor*)A)[0].data);
void* test_fadd_B_shape = (((DLTensor*)B)[0].shape);
void* test_fadd_B_strides = (((DLTensor*)B)[0].strides);
void* B_1 = (((DLTensor*)B)[0].data);
void* test_fadd_C_shape = (((DLTensor*)C)[0].shape);
void* test_fadd_C_strides = (((DLTensor*)C)[0].strides);
void* C_1 = (((DLTensor*)C)[0].data);
if (!(test_fadd_A_strides == NULL)) {
}
if (!(test_fadd_B_strides == NULL)) {
}
if (!(test_fadd_C_strides == NULL)) {
}
for (int32_t i0 = 0; i0 < 1024; ++i0) {
((float*)C_1)[i0] = (((float*)A_1)[i0] + ((float*)B_1)[i0]);
}
return 0;
}
// CodegenC: NOTE: Auto-generated entry function
#ifdef __cplusplus
extern "C"
#endif
TVM_DLL int32_t __tvm_main__(void* args, int* arg_type_ids, int num_args, void* out_ret_value, int* out_ret_tcode, void* resource_handle) {
return test_fadd(args, arg_type_ids, num_args, out_ret_value, out_ret_tcode, resource_handle);
}
temp = utils.tempdir()
path_dso = temp.relpath("temp.so")
mhost.export_library(path_dso)
m = tvm.runtime.load_module(path_dso)
fadd = m["test_fadd"]
dev = tvm.cpu(0)
# launch the kernel.
n = nn
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev)
fadd(a, b, c)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
add_pipeline
c host 代码生成#
nn = 1024
n = tvm.runtime.convert(nn)
A = te.placeholder((n,), name="A")
B = te.placeholder((n,), name="B")
AA = te.compute((n,), lambda *i: A(*i), name="A")
BB = te.compute((n,), lambda *i: B(*i), name="B")
T = te.compute(A.shape, lambda *i: AA(*i) + BB(*i), name="T")
C = te.compute(A.shape, lambda *i: T(*i), name="C")
s = te.create_schedule(C.op)
xo, xi = s[C].split(C.op.axis[0], factor=4)
xo1, xo2 = s[C].split(xo, factor=13)
s[C].parallel(xo2)
s[C].pragma(xo1, "parallel_launch_point")
s[C].pragma(xo2, "parallel_stride_pattern")
s[C].pragma(xo2, "parallel_barrier_when_finish")
# FIXME(tvm-team): vector operators are not supported for codegen to C yet
# s[C].vectorize(xi)
def check_c():
# Specifically allow offset to test codepath when offset is available
Ab = tvm.tir.decl_buffer(
A.shape, A.dtype, elem_offset=te.size_var("Aoffset"), offset_factor=8, name="A"
)
binds = {A: Ab}
# BUILD and invoke the kernel.
f1 = tvm.lower(s, [A, B, C], name="test_fadd_pipeline")
mhost = tvm.build(f1, target="c")
temp = utils.tempdir()
path_dso = temp.relpath("temp.so")
mhost.export_library(path_dso)
m = tvm.runtime.load_module(path_dso)
fadd = m["test_fadd_pipeline"]
dev = tvm.cpu(0)
# launch the kernel.
n = nn
a = tvm.nd.array(np.random.uniform(size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=n).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros(n, dtype=C.dtype), dev)
fadd(a, b, c)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
check_c()
tir.reinterpret
c host#
nn = 1024
n = tvm.runtime.convert(nn)
A = te.placeholder((n,), name="A", dtype="int32")
B = te.compute(
A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.reinterpret", 2 + A(*i)), name="B"
)
s = te.create_schedule(B.op)
def check_c():
mhost = tvm.build(s, [A, B], "c", name="test_reinterpret")
temp = utils.tempdir()
path_dso = temp.relpath("temp.so")
mhost.export_library(path_dso)
m = tvm.runtime.load_module(path_dso)
fadd = m["test_reinterpret"]
dev = tvm.cpu(0)
n = nn
a = tvm.nd.array(np.random.randint(-(2**30), 2**30, size=n).astype(A.dtype), dev)
b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev)
fadd(a, b)
tvm.testing.assert_allclose(b.numpy(), (2 + a.numpy()).view("float32"))
check_c()
tir.ceil
c host#
def test_ceil():
nn = 1024
n = tvm.runtime.convert(nn)
A = te.placeholder((n,), name="A", dtype="float32")
B = te.compute(A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.ceil", A(*i)), name="B")
s = te.create_schedule(B.op)
def check_c():
mhost = tvm.build(s, [A, B], "c", name="test_ceil")
temp = utils.tempdir()
path_dso = temp.relpath("temp.so")
mhost.export_library(path_dso)
m = tvm.runtime.load_module(path_dso)
fceil = m["test_ceil"]
dev = tvm.cpu(0)
n = nn
a = tvm.nd.array(np.random.rand(n).astype(A.dtype), dev)
b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev)
fceil(a, b)
tvm.testing.assert_allclose(b.numpy(), (np.ceil(a.numpy()).view("float32")))
check_c()
tir.floor
c host#
def test_floor():
nn = 1024
n = tvm.runtime.convert(nn)
A = te.placeholder((n,), name="A", dtype="float32")
B = te.compute(A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.floor", A(*i)), name="B")
s = te.create_schedule(B.op)
def check_c():
mhost = tvm.build(s, [A, B], "c", name="test_floor")
temp = utils.tempdir()
path_dso = temp.relpath("temp.so")
mhost.export_library(path_dso)
m = tvm.runtime.load_module(path_dso)
ffloor = m["test_floor"]
dev = tvm.cpu(0)
n = nn
a = tvm.nd.array(np.random.rand(n).astype(A.dtype), dev)
b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev)
ffloor(a, b)
tvm.testing.assert_allclose(b.numpy(), (np.floor(a.numpy()).view("float32")))
check_c()
tir.round
c host#
def test_round():
nn = 1024
n = tvm.runtime.convert(nn)
A = te.placeholder((n,), name="A", dtype="float32")
B = te.compute(A.shape, lambda *i: tvm.tir.call_intrin("float32", "tir.round", A(*i)), name="B")
s = te.create_schedule(B.op)
def check_c():
mhost = tvm.build(s, [A, B], "c", name="test_round")
temp = utils.tempdir()
path_dso = temp.relpath("temp.so")
mhost.export_library(path_dso)
m = tvm.runtime.load_module(path_dso)
fround = m["test_round"]
dev = tvm.cpu(0)
n = nn
a = tvm.nd.array(np.random.rand(n).astype(A.dtype), dev)
b = tvm.nd.array(np.zeros(n, dtype=B.dtype), dev)
fround(a, b)
tvm.testing.assert_allclose(b.numpy(), (np.round(a.numpy()).view("float32")))
check_c()
subroutine c host#
def test_subroutine_call():
@I.ir_module
class mod:
@T.prim_func
def main(A: T.Buffer(1, dtype="float32")):
mod.subroutine(A.data)
@T.prim_func(private=True)
def subroutine(A_data: T.handle("float32")):
A = T.decl_buffer(1, dtype="float32", data=A_data)
A[0] = 42.0
built = tvm.build(mod, target="c")
func_names = list(built["get_func_names"]())
assert (
"main" in func_names
), "Externally exposed functions should be listed in available functions."
assert (
"subroutine" not in func_names
), "Internal function should not be listed in available functions."
source = built.get_source()
assert (
source.count("main(void*") == 2
), "Expected two occurrences, for forward-declaration and definition"
assert (
source.count("subroutine(float*") == 2
), "Expected two occurrences, for forward-declaration and definition"
assert (
source.count("subroutine(") == 3
), "Expected three occurrences, for forward-declaration, definition, and call from main."
tvm.tir.call_intrin()
c host#
def test_call_packed():
def fake_func(fname="fake.func"):
ib = tvm.tir.ir_builder.create()
A = ib.pointer("float32", name="A")
fake_func1 = tvm.tir.call_packed(fname, A[0])
ib.emit(fake_func1)
body = ib.get()
return A, body
def check_global_packed_func():
fname = "fake.func"
A, body = fake_func(fname)
func1 = tvm.tir.PrimFunc([A], body).with_attr("global_symbol", "func1")
B, body = fake_func()
func2 = tvm.tir.PrimFunc([B], body).with_attr("global_symbol", "func2")
mod = tvm.IRModule({"fake_func1": func1, "fake_func2": func2})
fcode = tvm.build(mod, None, "c")
src = fcode.get_source()
# there are two locations calling the packed func
assert src.count(fname) == 2
suffix = "_packed"
packed_func_name = fname + suffix
# func name will be standardized by GetUniqueName and not exists anymore
assert src.find(packed_func_name) == -1
packed_func_real_name = "_".join(fname.split(".")) + suffix
func_declaration = "static void* %s = NULL;" % packed_func_real_name
# src only has 1 valid declaration
assert src.count(func_declaration) == 1
check_global_packed_func()