# from tvm.script import ir as I
# from tvm.script import relax as R
@I.ir_module
class Module:
@R.function
def main(inp_0: R.Tensor((1, 3, 224, 224), dtype="float32")) -> R.Tensor((1, 1000), dtype="float32"):
with R.dataflow():
lv: R.Tensor((1, 64, 112, 112), dtype="float32") = R.nn.conv2d(inp_0, metadata["relax.expr.Constant"][0], strides=[2, 2], padding=[3, 3, 3, 3], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv1: R.Tuple(R.Tensor((1, 64, 112, 112), dtype="float32"), R.Tensor((64,), dtype="float32"), R.Tensor((64,), dtype="float32")) = R.nn.batch_norm(lv, metadata["relax.expr.Constant"][1], metadata["relax.expr.Constant"][2], metadata["relax.expr.Constant"][3], metadata["relax.expr.Constant"][4], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv2: R.Tensor((1, 64, 112, 112), dtype="float32") = lv1[0]
lv3: R.Tensor((1, 64, 112, 112), dtype="float32") = R.nn.relu(lv2)
lv4: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.max_pool2d(lv3, pool_size=[3, 3], strides=[2, 2], dilation=[1, 1], padding=[1, 1, 1, 1], ceil_mode=False, layout="NCHW", out_layout="NCHW")
lv5: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(lv4, metadata["relax.expr.Constant"][5], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv6: R.Tuple(R.Tensor((1, 64, 56, 56), dtype="float32"), R.Tensor((64,), dtype="float32"), R.Tensor((64,), dtype="float32")) = R.nn.batch_norm(lv5, metadata["relax.expr.Constant"][6], metadata["relax.expr.Constant"][7], metadata["relax.expr.Constant"][8], metadata["relax.expr.Constant"][9], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv7: R.Tensor((1, 64, 56, 56), dtype="float32") = lv6[0]
lv8: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv7)
lv9: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(lv8, metadata["relax.expr.Constant"][10], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv10: R.Tuple(R.Tensor((1, 64, 56, 56), dtype="float32"), R.Tensor((64,), dtype="float32"), R.Tensor((64,), dtype="float32")) = R.nn.batch_norm(lv9, metadata["relax.expr.Constant"][11], metadata["relax.expr.Constant"][12], metadata["relax.expr.Constant"][13], metadata["relax.expr.Constant"][14], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv11: R.Tensor((1, 64, 56, 56), dtype="float32") = lv10[0]
lv12: R.Tensor((1, 64, 56, 56), dtype="float32") = R.add(lv11, lv4)
lv13: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv12)
lv14: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(lv13, metadata["relax.expr.Constant"][15], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv15: R.Tuple(R.Tensor((1, 64, 56, 56), dtype="float32"), R.Tensor((64,), dtype="float32"), R.Tensor((64,), dtype="float32")) = R.nn.batch_norm(lv14, metadata["relax.expr.Constant"][16], metadata["relax.expr.Constant"][17], metadata["relax.expr.Constant"][18], metadata["relax.expr.Constant"][19], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv16: R.Tensor((1, 64, 56, 56), dtype="float32") = lv15[0]
lv17: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv16)
lv18: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.conv2d(lv17, metadata["relax.expr.Constant"][20], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv19: R.Tuple(R.Tensor((1, 64, 56, 56), dtype="float32"), R.Tensor((64,), dtype="float32"), R.Tensor((64,), dtype="float32")) = R.nn.batch_norm(lv18, metadata["relax.expr.Constant"][21], metadata["relax.expr.Constant"][22], metadata["relax.expr.Constant"][23], metadata["relax.expr.Constant"][24], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv20: R.Tensor((1, 64, 56, 56), dtype="float32") = lv19[0]
lv21: R.Tensor((1, 64, 56, 56), dtype="float32") = R.add(lv20, lv13)
lv22: R.Tensor((1, 64, 56, 56), dtype="float32") = R.nn.relu(lv21)
lv23: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(lv22, metadata["relax.expr.Constant"][25], strides=[2, 2], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv24: R.Tuple(R.Tensor((1, 128, 28, 28), dtype="float32"), R.Tensor((128,), dtype="float32"), R.Tensor((128,), dtype="float32")) = R.nn.batch_norm(lv23, metadata["relax.expr.Constant"][26], metadata["relax.expr.Constant"][27], metadata["relax.expr.Constant"][28], metadata["relax.expr.Constant"][29], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv25: R.Tensor((1, 128, 28, 28), dtype="float32") = lv24[0]
lv26: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv25)
lv27: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(lv26, metadata["relax.expr.Constant"][30], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv28: R.Tuple(R.Tensor((1, 128, 28, 28), dtype="float32"), R.Tensor((128,), dtype="float32"), R.Tensor((128,), dtype="float32")) = R.nn.batch_norm(lv27, metadata["relax.expr.Constant"][31], metadata["relax.expr.Constant"][32], metadata["relax.expr.Constant"][33], metadata["relax.expr.Constant"][34], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv29: R.Tensor((1, 128, 28, 28), dtype="float32") = lv28[0]
lv30: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(lv22, metadata["relax.expr.Constant"][35], strides=[2, 2], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv31: R.Tuple(R.Tensor((1, 128, 28, 28), dtype="float32"), R.Tensor((128,), dtype="float32"), R.Tensor((128,), dtype="float32")) = R.nn.batch_norm(lv30, metadata["relax.expr.Constant"][36], metadata["relax.expr.Constant"][37], metadata["relax.expr.Constant"][38], metadata["relax.expr.Constant"][39], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv32: R.Tensor((1, 128, 28, 28), dtype="float32") = lv31[0]
lv33: R.Tensor((1, 128, 28, 28), dtype="float32") = R.add(lv29, lv32)
lv34: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv33)
lv35: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(lv34, metadata["relax.expr.Constant"][40], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv36: R.Tuple(R.Tensor((1, 128, 28, 28), dtype="float32"), R.Tensor((128,), dtype="float32"), R.Tensor((128,), dtype="float32")) = R.nn.batch_norm(lv35, metadata["relax.expr.Constant"][41], metadata["relax.expr.Constant"][42], metadata["relax.expr.Constant"][43], metadata["relax.expr.Constant"][44], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv37: R.Tensor((1, 128, 28, 28), dtype="float32") = lv36[0]
lv38: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv37)
lv39: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.conv2d(lv38, metadata["relax.expr.Constant"][45], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv40: R.Tuple(R.Tensor((1, 128, 28, 28), dtype="float32"), R.Tensor((128,), dtype="float32"), R.Tensor((128,), dtype="float32")) = R.nn.batch_norm(lv39, metadata["relax.expr.Constant"][46], metadata["relax.expr.Constant"][47], metadata["relax.expr.Constant"][48], metadata["relax.expr.Constant"][49], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv41: R.Tensor((1, 128, 28, 28), dtype="float32") = lv40[0]
lv42: R.Tensor((1, 128, 28, 28), dtype="float32") = R.add(lv41, lv34)
lv43: R.Tensor((1, 128, 28, 28), dtype="float32") = R.nn.relu(lv42)
lv44: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(lv43, metadata["relax.expr.Constant"][50], strides=[2, 2], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv45: R.Tuple(R.Tensor((1, 256, 14, 14), dtype="float32"), R.Tensor((256,), dtype="float32"), R.Tensor((256,), dtype="float32")) = R.nn.batch_norm(lv44, metadata["relax.expr.Constant"][51], metadata["relax.expr.Constant"][52], metadata["relax.expr.Constant"][53], metadata["relax.expr.Constant"][54], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv46: R.Tensor((1, 256, 14, 14), dtype="float32") = lv45[0]
lv47: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv46)
lv48: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(lv47, metadata["relax.expr.Constant"][55], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv49: R.Tuple(R.Tensor((1, 256, 14, 14), dtype="float32"), R.Tensor((256,), dtype="float32"), R.Tensor((256,), dtype="float32")) = R.nn.batch_norm(lv48, metadata["relax.expr.Constant"][56], metadata["relax.expr.Constant"][57], metadata["relax.expr.Constant"][58], metadata["relax.expr.Constant"][59], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv50: R.Tensor((1, 256, 14, 14), dtype="float32") = lv49[0]
lv51: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(lv43, metadata["relax.expr.Constant"][60], strides=[2, 2], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv52: R.Tuple(R.Tensor((1, 256, 14, 14), dtype="float32"), R.Tensor((256,), dtype="float32"), R.Tensor((256,), dtype="float32")) = R.nn.batch_norm(lv51, metadata["relax.expr.Constant"][61], metadata["relax.expr.Constant"][62], metadata["relax.expr.Constant"][63], metadata["relax.expr.Constant"][64], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv53: R.Tensor((1, 256, 14, 14), dtype="float32") = lv52[0]
lv54: R.Tensor((1, 256, 14, 14), dtype="float32") = R.add(lv50, lv53)
lv55: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv54)
lv56: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(lv55, metadata["relax.expr.Constant"][65], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv57: R.Tuple(R.Tensor((1, 256, 14, 14), dtype="float32"), R.Tensor((256,), dtype="float32"), R.Tensor((256,), dtype="float32")) = R.nn.batch_norm(lv56, metadata["relax.expr.Constant"][66], metadata["relax.expr.Constant"][67], metadata["relax.expr.Constant"][68], metadata["relax.expr.Constant"][69], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv58: R.Tensor((1, 256, 14, 14), dtype="float32") = lv57[0]
lv59: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv58)
lv60: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.conv2d(lv59, metadata["relax.expr.Constant"][70], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv61: R.Tuple(R.Tensor((1, 256, 14, 14), dtype="float32"), R.Tensor((256,), dtype="float32"), R.Tensor((256,), dtype="float32")) = R.nn.batch_norm(lv60, metadata["relax.expr.Constant"][71], metadata["relax.expr.Constant"][72], metadata["relax.expr.Constant"][73], metadata["relax.expr.Constant"][74], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv62: R.Tensor((1, 256, 14, 14), dtype="float32") = lv61[0]
lv63: R.Tensor((1, 256, 14, 14), dtype="float32") = R.add(lv62, lv55)
lv64: R.Tensor((1, 256, 14, 14), dtype="float32") = R.nn.relu(lv63)
lv65: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(lv64, metadata["relax.expr.Constant"][75], strides=[2, 2], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv66: R.Tuple(R.Tensor((1, 512, 7, 7), dtype="float32"), R.Tensor((512,), dtype="float32"), R.Tensor((512,), dtype="float32")) = R.nn.batch_norm(lv65, metadata["relax.expr.Constant"][76], metadata["relax.expr.Constant"][77], metadata["relax.expr.Constant"][78], metadata["relax.expr.Constant"][79], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv67: R.Tensor((1, 512, 7, 7), dtype="float32") = lv66[0]
lv68: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv67)
lv69: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(lv68, metadata["relax.expr.Constant"][80], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv70: R.Tuple(R.Tensor((1, 512, 7, 7), dtype="float32"), R.Tensor((512,), dtype="float32"), R.Tensor((512,), dtype="float32")) = R.nn.batch_norm(lv69, metadata["relax.expr.Constant"][81], metadata["relax.expr.Constant"][82], metadata["relax.expr.Constant"][83], metadata["relax.expr.Constant"][84], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv71: R.Tensor((1, 512, 7, 7), dtype="float32") = lv70[0]
lv72: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(lv64, metadata["relax.expr.Constant"][85], strides=[2, 2], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv73: R.Tuple(R.Tensor((1, 512, 7, 7), dtype="float32"), R.Tensor((512,), dtype="float32"), R.Tensor((512,), dtype="float32")) = R.nn.batch_norm(lv72, metadata["relax.expr.Constant"][86], metadata["relax.expr.Constant"][87], metadata["relax.expr.Constant"][88], metadata["relax.expr.Constant"][89], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv74: R.Tensor((1, 512, 7, 7), dtype="float32") = lv73[0]
lv75: R.Tensor((1, 512, 7, 7), dtype="float32") = R.add(lv71, lv74)
lv76: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv75)
lv77: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(lv76, metadata["relax.expr.Constant"][90], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv78: R.Tuple(R.Tensor((1, 512, 7, 7), dtype="float32"), R.Tensor((512,), dtype="float32"), R.Tensor((512,), dtype="float32")) = R.nn.batch_norm(lv77, metadata["relax.expr.Constant"][91], metadata["relax.expr.Constant"][92], metadata["relax.expr.Constant"][93], metadata["relax.expr.Constant"][94], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv79: R.Tensor((1, 512, 7, 7), dtype="float32") = lv78[0]
lv80: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv79)
lv81: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.conv2d(lv80, metadata["relax.expr.Constant"][95], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv82: R.Tuple(R.Tensor((1, 512, 7, 7), dtype="float32"), R.Tensor((512,), dtype="float32"), R.Tensor((512,), dtype="float32")) = R.nn.batch_norm(lv81, metadata["relax.expr.Constant"][96], metadata["relax.expr.Constant"][97], metadata["relax.expr.Constant"][98], metadata["relax.expr.Constant"][99], axis=1, epsilon=1.0000000000000001e-05, center=True, scale=True, momentum=0.10000000000000001)
lv83: R.Tensor((1, 512, 7, 7), dtype="float32") = lv82[0]
lv84: R.Tensor((1, 512, 7, 7), dtype="float32") = R.add(lv83, lv76)
lv85: R.Tensor((1, 512, 7, 7), dtype="float32") = R.nn.relu(lv84)
lv86: R.Tensor((1, 512, 1, 1), dtype="float32") = R.nn.adaptive_avg_pool2d(lv85, output_size=[1, 1], layout="NCHW", out_layout="NCHW")
lv87: R.Tensor((1, 512), dtype="float32") = R.reshape(lv86, R.shape([1, 512]))
lv88: R.Tensor((512, 1000), dtype="float32") = R.permute_dims(metadata["relax.expr.Constant"][100], axes=None)
lv89: R.Tensor((1, 1000), dtype="float32") = R.matmul(lv87, lv88, out_dtype="float32")
lv90: R.Tensor((1, 1000), dtype="float32") = R.add(lv89, metadata["relax.expr.Constant"][101])
gv: R.Tensor((1, 1000), dtype="float32") = lv90
R.output(gv)
return gv
# Metadata omitted. Use show_meta=True in script() method to show it.