def @main(%x: Tensor[(2, 4), float32] /* ty=Tensor[(2, 4), float32] */, %weight: Tensor[(3, 4), float32] /* ty=Tensor[(3, 4), float32] */, %in_bias: Tensor[(3), float32] /* ty=Tensor[(3), float32] */) -> Tensor[(2, 3), float32] {
%0 = nn.dense(%x, %weight, units=None) /* ty=Tensor[(2, 3), float32] */;
%1 = add(%0, %in_bias) /* ty=Tensor[(2, 3), float32] */;
%2 = nn.relu(%1) /* ty=Tensor[(2, 3), float32] */;
multiply(%2, meta[relay.Constant][0] /* ty=Tensor[(3), float32] */) /* ty=Tensor[(2, 3), float32] */
}
def @main(%x: Tensor[(2, 4), float32] /* ty=Tensor[(2, 4), float32] */, %weight: Tensor[(3, 4), float32] /* ty=Tensor[(3, 4), float32] */, %in_bias: Tensor[(3), float32] /* ty=Tensor[(3), float32] */) -> Tensor[(2, 3), float32] {
%0 = expand_dims(meta[relay.Constant][0] /* ty=Tensor[(3), float32] */, axis=1) /* ty=Tensor[(3, 1), float32] */;
%1 = multiply(%weight, %0) /* ty=Tensor[(3, 4), float32] */;
%2 = nn.dense(%x, %1, units=None) /* ty=Tensor[(2, 3), float32] */;
%3 = multiply(%in_bias, meta[relay.Constant][0] /* ty=Tensor[(3), float32] */) /* ty=Tensor[(3), float32] */;
%4 = add(%2, %3) /* ty=Tensor[(2, 3), float32] */;
nn.relu(%4) /* ty=Tensor[(2, 3), float32] */
}
def @main(%x: Tensor[(3, 5), float32] /* ty=Tensor[(3, 5), float32] */, %weight: Tensor[(4, 5), float32] /* ty=Tensor[(4, 5), float32] */, %in_bias: Tensor[(4), float32] /* ty=Tensor[(4), float32] */) -> Tensor[(3, 4), float32] {
%0 = nn.dense(%x, %weight, units=None) /* ty=Tensor[(3, 4), float32] */;
%1 = add(%0, %in_bias) /* ty=Tensor[(3, 4), float32] */;
%2 = nn.relu(%1) /* ty=Tensor[(3, 4), float32] */;
multiply(%2, meta[relay.Constant][0] /* ty=Tensor[(4), float32] */) /* ty=Tensor[(3, 4), float32] */
}
def @main(%x: Tensor[(3, 5), float32] /* ty=Tensor[(3, 5), float32] */, %weight: Tensor[(4, 5), float32] /* ty=Tensor[(4, 5), float32] */, %in_bias: Tensor[(4), float32] /* ty=Tensor[(4), float32] */) -> Tensor[(3, 4), float32] {
%0 = expand_dims(meta[relay.Constant][0] /* ty=Tensor[(4), float32] */, axis=1) /* ty=Tensor[(4, 1), float32] */;
%1 = multiply(%weight, %0) /* ty=Tensor[(4, 5), float32] */;
%2 = nn.dense(%x, %1, units=None) /* ty=Tensor[(3, 4), float32] */;
%3 = multiply(%in_bias, meta[relay.Constant][0] /* ty=Tensor[(4), float32] */) /* ty=Tensor[(4), float32] */;
%4 = add(%2, %3) /* ty=Tensor[(3, 4), float32] */;
nn.relu(%4) /* ty=Tensor[(3, 4), float32] */
}