双路径前向折叠#
%cd ..
import set_env
import numpy as np
import tvm
from tvm import relay
from tvm.relay import transform
# from tvm.relay.testing import create_workload
# from tvm.relay.build_module import bind_params_by_name
def initializer(_, param):
param = np.zeros(param.shape)
def _get_positive_scale(size):
return np.random.uniform(0.5, 1, size=size).astype("float32")
def run_opt_pass(expr, opt_pass):
assert isinstance(opt_pass, tvm.transform.Pass)
mod = tvm.IRModule.from_expr(expr)
mod = opt_pass(mod)
entry = mod["main"]
return entry if isinstance(expr, relay.Function) else entry.body
/media/pc/data/lxw/ai/tvm-book/tests/book/doc/tests
轴缩放被两个消费者消耗:
def before(x, conv_weight, in_bias, in_scale, channels, blocking):
args = [x, conv_weight, in_bias]
x = relay.multiply(in_scale, x)
x = relay.nn.relu(x)
x = relay.subtract(x, in_bias)
y1 = relay.nn.conv2d(
x,
conv_weight,
channels=channels,
kernel_size=(3, 3),
data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC",
kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO",
groups=channels,
padding=(1, 1),
)
y2 = relay.nn.conv2d(
x,
conv_weight,
channels=channels,
kernel_size=(3, 3),
data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC",
kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO",
groups=channels,
padding=(1, 1),
)
z = relay.add(y1, y2)
return relay.Function(args, z)
def expected(x, conv_weight, in_bias, in_scale, channels, blocking):
args = [x, conv_weight, in_bias]
x = relay.nn.relu(x)
if blocking:
_in_scale = relay.reshape(
in_scale, (1, 1, 1, channels // blocking[0], blocking[0])
) # NHWCc
else:
_in_scale = in_scale
in_bias = relay.divide(in_bias, _in_scale)
x = relay.subtract(x, in_bias)
if blocking:
_in_scale = relay.reshape(
in_scale, (1, 1, 1, channels // blocking[0], 1, blocking[0])
) # HWIOio
y1 = relay.nn.conv2d(
x,
relay.multiply(conv_weight, _in_scale),
channels=channels,
kernel_size=(3, 3),
data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC",
kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO",
groups=channels,
padding=(1, 1),
)
if blocking:
_in_scale = relay.reshape(
in_scale, (1, 1, 1, channels // blocking[0], 1, blocking[0])
) # HWIOio
y2 = relay.nn.conv2d(
x,
relay.multiply(conv_weight, _in_scale),
channels=channels,
kernel_size=(3, 3),
data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC",
kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO",
groups=channels,
padding=(1, 1),
)
z = relay.add(y1, y2)
return relay.Function(args, z)
test_cases = [
((2, 4, 10, 3), 3, None),
((2, 4, 10, 2, 2), 4, (2, 2))
]
for dshape, channels, blocking in test_cases:
x = relay.var("x", shape=dshape)
if blocking:
in_channels = dshape[3] * dshape[4]
wshape = (3, 3, 1, channels // blocking[1], 1, blocking[1]) # HWIOio
weight = relay.var("weight", shape=wshape)
in_bias = relay.var("in_bias", shape=(in_channels // blocking[0], blocking[0]))
in_scale = relay.const(_get_positive_scale((in_channels // blocking[0], blocking[0])))
else:
in_channels = dshape[-1]
wshape = (3, 3, 1, channels) # HWIO
weight = relay.var("weight", shape=wshape)
in_bias = relay.var("in_bias", shape=(in_channels,))
in_scale = relay.const(
_get_positive_scale(
in_channels,
)
)
# test depthwise
assert in_channels == channels
y1 = before(x, weight, in_bias, in_scale, channels, blocking)
y1 = run_opt_pass(y1, transform.InferType())
print("FoldScaleAxis 前:")
tvm.IRModule.from_expr(y1).show()
y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis())
print("FoldScaleAxis 后:")
tvm.IRModule.from_expr(y1_folded).show()
type_dict = {x.name_hint: x.checked_type for x in y1.params}
weight = relay.var("weight", type_dict["weight"])
y1_expected = expected(x, weight, in_bias, in_scale, channels, blocking)
y1_expected = run_opt_pass(y1_expected, transform.InferType())
tvm.ir.assert_structural_equal(y1_folded, y1_expected)
FoldScaleAxis 前:
FoldScaleAxis 后:
FoldScaleAxis 前:
FoldScaleAxis 后:
def @main(%x: Tensor[(2, 4, 10, 3), float32] /* ty=Tensor[(2, 4, 10, 3), float32] */, %weight: Tensor[(3, 3, 1, 3), float32] /* ty=Tensor[(3, 3, 1, 3), float32] */, %in_bias: Tensor[(3), float32] /* ty=Tensor[(3), float32] */) -> Tensor[(2, 4, 10, 3), float32] {
%0 = multiply(meta[relay.Constant][0] /* ty=Tensor[(3), float32] */, %x) /* ty=Tensor[(2, 4, 10, 3), float32] */;
%1 = nn.relu(%0) /* ty=Tensor[(2, 4, 10, 3), float32] */;
%2 = subtract(%1, %in_bias) /* ty=Tensor[(2, 4, 10, 3), float32] */;
%3 = nn.conv2d(%2, %weight, padding=[1, 1, 1, 1], groups=3, channels=3, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO") /* ty=Tensor[(2, 4, 10, 3), float32] */;
%4 = nn.conv2d(%2, %weight, padding=[1, 1, 1, 1], groups=3, channels=3, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO") /* ty=Tensor[(2, 4, 10, 3), float32] */;
add(%3, %4) /* ty=Tensor[(2, 4, 10, 3), float32] */
}
def @main(%x: Tensor[(2, 4, 10, 3), float32] /* ty=Tensor[(2, 4, 10, 3), float32] */, %weight: Tensor[(3, 3, 1, 3), float32] /* ty=Tensor[(3, 3, 1, 3), float32] */, %in_bias: Tensor[(3), float32] /* ty=Tensor[(3), float32] */) -> Tensor[(2, 4, 10, 3), float32] {
%0 = nn.relu(%x) /* ty=Tensor[(2, 4, 10, 3), float32] */;
%1 = divide(%in_bias, meta[relay.Constant][0] /* ty=Tensor[(3), float32] */) /* ty=Tensor[(3), float32] */;
%2 = subtract(%0, %1) /* ty=Tensor[(2, 4, 10, 3), float32] */;
%3 = multiply(%weight, meta[relay.Constant][0] /* ty=Tensor[(3), float32] */) /* ty=Tensor[(3, 3, 1, 3), float32] */;
%4 = multiply(%weight, meta[relay.Constant][0] /* ty=Tensor[(3), float32] */) /* ty=Tensor[(3, 3, 1, 3), float32] */;
%5 = nn.conv2d(%2, %3, padding=[1, 1, 1, 1], groups=3, channels=3, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO") /* ty=Tensor[(2, 4, 10, 3), float32] */;
%6 = nn.conv2d(%2, %4, padding=[1, 1, 1, 1], groups=3, channels=3, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO") /* ty=Tensor[(2, 4, 10, 3), float32] */;
add(%5, %6) /* ty=Tensor[(2, 4, 10, 3), float32] */
}
def @main(%x: Tensor[(2, 4, 10, 2, 2), float32] /* ty=Tensor[(2, 4, 10, 2, 2), float32] */, %weight: Tensor[(3, 3, 1, 2, 1, 2), float32] /* ty=Tensor[(3, 3, 1, 2, 1, 2), float32] */, %in_bias: Tensor[(2, 2), float32] /* ty=Tensor[(2, 2), float32] */) -> Tensor[(2, 4, 10, 2, 2), float32] {
%0 = multiply(meta[relay.Constant][0] /* ty=Tensor[(2, 2), float32] */, %x) /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
%1 = nn.relu(%0) /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
%2 = subtract(%1, %in_bias) /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
%3 = nn.conv2d(%2, %weight, padding=[1, 1, 1, 1], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC2c", kernel_layout="HWIO1i2o") /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
%4 = nn.conv2d(%2, %weight, padding=[1, 1, 1, 1], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC2c", kernel_layout="HWIO1i2o") /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
add(%3, %4) /* ty=Tensor[(2, 4, 10, 2, 2), float32] */
}
def @main(%x: Tensor[(2, 4, 10, 2, 2), float32] /* ty=Tensor[(2, 4, 10, 2, 2), float32] */, %weight: Tensor[(3, 3, 1, 2, 1, 2), float32] /* ty=Tensor[(3, 3, 1, 2, 1, 2), float32] */, %in_bias: Tensor[(2, 2), float32] /* ty=Tensor[(2, 2), float32] */) -> Tensor[(2, 4, 10, 2, 2), float32] {
%0 = reshape(meta[relay.Constant][0] /* ty=Tensor[(2, 2), float32] */, newshape=[1, 1, 1, 2, 2]) /* ty=Tensor[(1, 1, 1, 2, 2), float32] */;
%1 = nn.relu(%x) /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
%2 = divide(%in_bias, %0) /* ty=Tensor[(1, 1, 1, 2, 2), float32] */;
%3 = reshape(meta[relay.Constant][0] /* ty=Tensor[(2, 2), float32] */, newshape=[1, 1, 1, 2, 1, 2]) /* ty=Tensor[(1, 1, 1, 2, 1, 2), float32] */;
%4 = subtract(%1, %2) /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
%5 = multiply(%weight, %3) /* ty=Tensor[(3, 3, 1, 2, 1, 2), float32] */;
%6 = reshape(meta[relay.Constant][0] /* ty=Tensor[(2, 2), float32] */, newshape=[1, 1, 1, 2, 1, 2]) /* ty=Tensor[(1, 1, 1, 2, 1, 2), float32] */;
%7 = multiply(%weight, %6) /* ty=Tensor[(3, 3, 1, 2, 1, 2), float32] */;
%8 = nn.conv2d(%4, %5, padding=[1, 1, 1, 1], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC2c", kernel_layout="HWIO1i2o") /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
%9 = nn.conv2d(%4, %7, padding=[1, 1, 1, 1], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC2c", kernel_layout="HWIO1i2o") /* ty=Tensor[(2, 4, 10, 2, 2), float32] */;
add(%8, %9) /* ty=Tensor[(2, 4, 10, 2, 2), float32] */
}