前向折叠失败#
%cd ..
import set_env
import numpy as np
import tvm
from tvm import relay
from tvm.relay import transform
# from tvm.relay.testing import create_workload
# from tvm.relay.build_module import bind_params_by_name
def initializer(_, param):
param = np.zeros(param.shape)
def _get_positive_scale(size):
return np.random.uniform(0.5, 1, size=size).astype("float32")
def run_opt_pass(expr, opt_pass):
assert isinstance(opt_pass, tvm.transform.Pass)
mod = tvm.IRModule.from_expr(expr)
mod = opt_pass(mod)
entry = mod["main"]
return entry if isinstance(expr, relay.Function) else entry.body
/media/pc/data/lxw/ai/tvm-book/tests/book/doc/tests
def before(x, conv_weight, in_bias, in_scale, channels, blocking):
x = relay.multiply(x, in_scale)
xx = relay.nn.leaky_relu(x, alpha=0.1)
y1 = relay.nn.conv2d(
xx,
conv_weight,
channels=channels,
kernel_size=(3, 3),
data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC",
kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO",
padding=(1, 1),
)
z = relay.add(y1, x)
return relay.Function(relay.analysis.free_vars(z), z)
test_cases = [
((2, 11, 10, 4), 4, None),
((2, 11, 10, 2, 2), 4, (2, 2))
]
for shape, channels, blocking in test_cases:
x = relay.var("x", shape=shape)
if blocking:
in_channels = shape[3] * shape[4]
in_bias = relay.var("in_bias", shape=(in_channels // blocking[0], blocking[0]))
in_scale = relay.const(_get_positive_scale((in_channels // blocking[0], blocking[0])))
else:
in_channels = shape[-1]
in_bias = relay.var("in_bias", shape=(in_channels,))
in_scale = relay.const(_get_positive_scale(size=(in_channels,)))
# test depthwise
assert in_channels == channels
weight = relay.var("weight")
y1 = before(x, weight, in_bias, in_scale, channels, blocking)
y1 = run_opt_pass(y1, transform.InferType())
y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis())
tvm.ir.assert_structural_equal(y1, y1_folded)
tvm.IRModule.from_expr(y1).show()
def @main(%x: Tensor[(2, 11, 10, 4), float32] /* ty=Tensor[(2, 11, 10, 4), float32] */, %weight: Tensor[(3, 3, 4, 4), float32] /* ty=Tensor[(3, 3, 4, 4), float32] */) -> Tensor[(2, 11, 10, 4), float32] {
%0 = multiply(%x, meta[relay.Constant][0] /* ty=Tensor[(4), float32] */) /* ty=Tensor[(2, 11, 10, 4), float32] */;
%1 = nn.leaky_relu(%0, alpha=0.1f) /* ty=Tensor[(2, 11, 10, 4), float32] */;
%2 = nn.conv2d(%1, %weight, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWIO") /* ty=Tensor[(2, 11, 10, 4), float32] */;
add(%2, %0) /* ty=Tensor[(2, 11, 10, 4), float32] */
}
def @main(%x: Tensor[(2, 11, 10, 2, 2), float32] /* ty=Tensor[(2, 11, 10, 2, 2), float32] */, %weight: Tensor[(3, 3, 4, 2, 1, 2), float32] /* ty=Tensor[(3, 3, 4, 2, 1, 2), float32] */) -> Tensor[(2, 11, 10, 2, 2), float32] {
%0 = multiply(%x, meta[relay.Constant][0] /* ty=Tensor[(2, 2), float32] */) /* ty=Tensor[(2, 11, 10, 2, 2), float32] */;
%1 = nn.leaky_relu(%0, alpha=0.1f) /* ty=Tensor[(2, 11, 10, 2, 2), float32] */;
%2 = nn.conv2d(%1, %weight, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3], data_layout="NHWC2c", kernel_layout="HWIO1i2o") /* ty=Tensor[(2, 11, 10, 2, 2), float32] */;
add(%2, %0) /* ty=Tensor[(2, 11, 10, 2, 2), float32] */
}