tvm.tir

目录

tvm.tir#

Namespace for Tensor-level IR

class tvm.tir.Add(a, b, span=None)[源代码]#

Add node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Allocate(buffer_var, dtype, extents, condition, body, annotations=None, span=None)[源代码]#

Allocate node.

Parameters#

buffer_varVar

The buffer variable.

dtypestr

The data type of the buffer.

extentslist of Expr

The extents of the allocate

conditionPrimExpr

The condition.

bodyStmt

The body statement.

annotations: Optional[Mapping[str, Object]]

Additional annotation hints

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • buffer_var (Var)

  • dtype (str)

  • extents (List[PrimExpr])

  • condition (PrimExpr)

  • body (Stmt)

  • annotations (Mapping[str, Object])

  • span (Span | None)

class tvm.tir.AllocateConst(buffer_var, dtype, extents, data_or_idx, body, annotations=None, span=None)[源代码]#

Allocate constant node.

Parameters#

buffer_varVar

The buffer variable.

dtypestr

The data type of the buffer.

extentslist of Expr

The extents of the allocate

data_or_idxUnion[NDArray, int]

If an NDArray, this is the const data associated with the constant. If an integer, this is the index into the "constants" attribute of the IRModule that contains the AllocateConst.

bodyStmt

The body statement.

annotationsOptional[Mapping[str, Object]]

Additional annotations about the allocation.

spanOptional[Span]

The location of the stmt in the source code.

参数:
class tvm.tir.And(a, b, span=None)[源代码]#

And node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Any(span=None)[源代码]#

Any node.

spanOptional[Span]

The location of this expression in the source code.

参数:

span (Span | None)

class tvm.tir.AssertStmt(condition, message, body, span=None)[源代码]#

AssertStmt node.

Parameters#

conditionPrimExpr

The assert condition.

messagePrimExpr

The error message.

bodytvm.tir.Stmt

The body statement.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • condition (PrimExpr)

  • message (PrimExpr)

  • body (Stmt)

  • span (Span | None)

class tvm.tir.AttrStmt(node, attr_key, value, body, span=None)[源代码]#

AttrStmt node.

Parameters#

nodeObject

The node to annotate the attribute

attr_keystr

Attribute type key.

valuePrimExpr

The value of the attribute

bodyStmt

The body statement.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • node (Object)

  • attr_key (str)

  • value (PrimExpr)

  • body (Stmt)

  • span (Span | None)

class tvm.tir.BijectiveLayout[源代码]#

Bijective mapping for two layouts (src-layout and dst-layout). It provides shape and index conversion between each other.

Do not construct directly, use bijective_layout instead. See the documentation of bijective_layout for more details.

Parameters#

src_layoutstr or Layout

source layout.

dst_layoutstr or Layout

destination layout.

See Also#

bijective_layout : Declare a layout

backward_index(index)[源代码]#

Given the indices of the dst-layout, infer the src index.

Parameters#

index: Array of Expr

The indices in dst-layout.

Returns#

src_index: Array of Expr

The inferred indices in src-layout.

backward_shape(shape)[源代码]#

Given the shape of the dst-layout, infer the src shape.

Parameters#

shape: Array of Expr

The shape in dst-layout.

Returns#

src_shape: Array of Expr

The inferred shape in src-layout.

forward_index(index)[源代码]#

Given the indices of the src-layout, infer the dst index.

Parameters#

index: Array of Expr

The indices in src-layout.

Returns#

dst_index: Array of Expr

The inferred indices in dst-layout.

forward_shape(shape)[源代码]#

Given the shape of the src-layout, infer the dst shape.

Parameters#

shape: Array of Expr

The shape in src-layout.

Returns#

dst_shape: Array of Expr

The inferred shape in dst-layout.

class tvm.tir.Block(iter_vars, reads, writes, name_hint, body, init=None, alloc_buffers=None, match_buffers=None, annotations=None, span=None)[源代码]#

Block node.

Parameters#

iter_varsList[IterVar]

The block Variable.

readsList[BufferRegion]

The read buffer regions of the block.

writes: List[BufferRegion]

The write buffer regions of the block.

name_hint: str

the name_hint of the block.

body: Stmt

The body of the block.

init: Optional[Stmt]

The init block of the reduction block

alloc_buffers: Optional[list[Buffer]]

The buffer allocations

match_buffers: Optional[List[MatchBufferRegion]]

The subregion buffer match

annotations: Optional[Mapping[str, Object]]

Additional annotation hints.

spanOptional[Span]

The location of this block in the source code.

参数:
class tvm.tir.BlockDependenceInfo(mod)[源代码]#

An object that helps build and query block level dependences using the 2 core objects BlockScope and StmtSRef

The data structures exposed are: 1) sref2scope: Mapping from the srefs to its corresponding BlockScope 2) stmt2ref: Mapping from blocks to corresponding StmtSRefs

Note that this object does not store SRefs to loops as the purpose is only to expose block level dependences. This provides the advantage that the scope block (parent block) for a given block sref can be directly accessed as sref->parent

参数:

mod (IRModule)

get_block_scope(block_sref)[源代码]#

Get the BlockScope correpsonding to the block sref

Parameters#

block_srefStmtSRef

The block sref to be retrieved

Returns#

scopeStmtSRef

The corresponding BlockScope

参数:

block_sref (StmtSRef)

返回类型:

BlockScope

get_sref(block)[源代码]#

Return the corresponding sref that points to the block

Parameters#

stmtBlock

The block for which the sref is to be retrived

Returns#

srefStmtSRef

The corresponding sref

参数:

block (Block)

返回类型:

StmtSRef | None

class tvm.tir.BlockRealize(iter_values, predicate, block, span=None)[源代码]#

BlockRealize node.

Parameters#

iter_valuesList[PrimExpr]

The binding values of the block var.

predicateUnion[PrimExpr, bool]

The predicate of the block.

blockBlock

The block to realize

spanOptional[Span]

The location of this block_realize in the source code.

参数:
  • iter_values (List[PrimExpr])

  • predicate (PrimExpr)

  • block (Block)

  • span (Span | None)

class tvm.tir.Broadcast(value, lanes, span=None)[源代码]#

Broadcast node.

Parameters#

valuePrimExpr

The value of the expression.

lanesPrimExpr

The lanes of the expression.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • value (PrimExpr)

  • lanes (PrimExpr)

  • span (Span | None)

class tvm.tir.Buffer[源代码]#

Symbolic data buffer in TVM.

Buffer provide a way to represent data layout specialization of data structure in TVM.

Do not construct directly, use decl_buffer() instead. See the documentation of decl_buffer() for more details.

See Also#

decl_buffer : Declare a buffer

access_ptr(access_mask, ptr_type='handle', content_lanes=1, offset=0, extent=None)[源代码]#

Get an access pointer to the head of buffer.

This is the recommended method to get buffer data ptress when interacting with external functions.

Parameters#

access_maskint

The access pattern MASK. Indicate whether the access will read or write to the data content.

ptr_typestr, optional

The data type of the result pointer. Do not specify unless we want to cast pointer to specific type.

content_lanes: int, optional

The number of lanes for the data type. This value is greater than one for vector types.

offset: Expr, optional

The offset of pointer. We can use it to offset by the number of elements from the address of ptr.

extent: Expr, optional

The extent of pointer.

Examples#

# Get access ptr for read
buffer.access_ptr("r")
# Get access ptr for read/write with bitmask
buffer.access_ptr(Buffer.READ | Buffer.WRITE)
# Get access ptr for read/write with str flag
buffer.access_ptr("rw")
# Get access ptr for read with offset
buffer.access_ptr("r", offset = 100)
# Get access ptr for read with extent
buffer.access_ptr("r", extent = 100)
get_flattened_buffer()[源代码]#

Generate a Buffer that is a flattened version of this buffer.

Returns#

flattenedBuffer

The corresponding flat buffer.

offset_of(indices)[源代码]#

Determine the offset of the provided indices in the flattened buffer.

Parameters#

indices : Union[PrimExpr, List[PrimExpr]]

The indices of the element in the original buffer.

Returns#

flattened_indices: List[PrimExpr]

The offset indices of the element in the flattened buffer.

scope()[源代码]#

Return the storage scope associated with this buffer. Returns ------- scope : str

The storage scope associated with this buffer.

vload(begin, dtype=None, predicate=None)[源代码]#

Generate an Expr that loads dtype from begin index.

Parameters#

beginArray of Expr

The beginning index in unit of Buffer.dtype

dtypestr

The data type to be loaded, can be vector type which have lanes that is multiple of Buffer.dtype

predicateOptional[PrimExpr]

A vector mask of boolean values indicating which lanes of a vector are to be loaded. The number lanes of the mask must be equal to the number of lanes being loaded.

Returns#

loadExpr

The corresponding load expression.

vstore(begin, value, predicate=None)[源代码]#

Generate a Stmt that store value into begin index.

Parameters#

beginArray of Expr

The beginning index in unit of Buffer.dtype

valueExpr

The value to be stored.

predicateOptional[PrimExpr]

A vector mask of boolean values indicating which lanes of a vector are to be stored. The number lanes of the mask must be equal to the number of lanes in value.

Returns#

storeStmt

The corresponding store stmt.

class tvm.tir.BufferLoad(buffer, indices, predicate=None, span=None)[源代码]#

Buffer load node.

Parameters#

bufferBuffer

The buffer to be loaded.

indicesList[PrimExpr]

The buffer indices to load values from.

spanOptional[Span]

The location of this expression in the source code.

predicateOptional[PrimExpr]

A vector mask of boolean values indicating which lanes of a vector are to be loaded. The number lanes of the mask must be equal to the number of lanes being loaded.

参数:
  • buffer (Buffer)

  • indices (List[PrimExpr])

  • predicate (PrimExpr | None)

  • span (Span | None)

class tvm.tir.BufferRealize(buffer, bounds, condition, body, span=None)[源代码]#

Buffer realize node.

Parameters#

bufferBuffer

The buffer.

boundsList[Range]

The value we to be stored.

conditionPrimExpr

The realize condition.

bodyStmt

The body of the statement.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • buffer (Buffer)

  • bounds (List[Range])

  • condition (PrimExpr)

  • body (Stmt)

  • span (Span | None)

class tvm.tir.BufferRegion(buffer, region)[源代码]#

BufferRegion node.

Parameters#

bufferBuffer

The buffer of the buffer region

regionList[Range]

The region array of the buffer region

参数:
class tvm.tir.BufferStore(buffer, value, indices, predicate=None, span=None)[源代码]#

Buffer store node.

Parameters#

bufferBuffer

The buffer.

valuePrimExpr

The value we to be stored.

indicesList[PrimExpr]

The indices location to be stored.

predicateOptional[PrimExpr]

A vector mask of boolean values indicating which lanes of a vector are to be stored. The number lanes of the mask must be equal to the number of lanes in value.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • buffer (Buffer)

  • value (PrimExpr)

  • indices (List[PrimExpr])

  • predicate (PrimExpr | None)

  • span (Span | None)

class tvm.tir.Call(dtype, op, args, span=None)[源代码]#

Call node.

Parameters#

dtypestr

The return data type

opUnion[Op, str]

The function to be called, or the name to the global tvm.Op

argslist of Expr

The input arguments to the call

spanOptional[Span]

The location of this expression in the source code.

参数:
  • dtype (str)

  • op (Op)

  • args (List[PrimExpr])

  • span (Span | None)

class tvm.tir.CallEffectKind[源代码]#

Possible kinds of Call effects.

class tvm.tir.Cast(dtype, value, span=None)[源代码]#

Cast expression.

Parameters#

dtypestr

The data type

valuePrimExpr

The value of the function.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • dtype (str)

  • value (PrimExpr)

  • span (Span | None)

class tvm.tir.CommReducer(lhs, rhs, result, identity_element, span=None)[源代码]#

Commutative reduce operator

Parameters#

lhsList[Var]

The left arguments of the reducer.

rhsList[Var]

The right arguments of the reducer.

resultList[PrimExpr]

The reduction results.

identity_elementList[PrimExpr]

The identity elements.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • lhs (List[Var])

  • rhs (List[Var])

  • result (List[PrimExpr])

  • identity_element (List[PrimExpr])

  • span (Span | None)

class tvm.tir.DataProducer[源代码]#
class tvm.tir.DeclBuffer(buffer, body, span=None)[源代码]#

DeclBuffer node.

Parameters#

buffer: Buffer

The buffer being declared.

body: Stmt

The body statement to be executed.

span: Optional[Span]

The location of this DeclBuffer in the source code.

参数:
class tvm.tir.Div(a, b, span=None)[源代码]#

Div node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.EQ(a, b, span=None)[源代码]#

EQ node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Evaluate(value, span=None)[源代码]#

Evaluate node.

Parameters#

valuePrimExpr

The expression to be evaluated.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • value (PrimExpr)

  • span (Span | None)

class tvm.tir.FloatImm(dtype, value, span=None)[源代码]#

Float constant.

Parameters#

dtypestr

The data type

valuefloat

The constant value.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • dtype (str)

  • value (float)

  • span (Span | None)

class tvm.tir.FloorDiv(a, b, span=None)[源代码]#

FloorDiv node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.FloorMod(a, b, span=None)[源代码]#

FloorMod node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.For(loop_var, min, extent, kind, body, thread_binding=None, annotations=None, span=None)[源代码]#

For node.

Parameters#

loop_varVar

The loop variable.

minPrimExpr

The beginning value.

extentPrimExpr

The length of the loop.

kindForKind

The type of the for.

bodyStmt

The body statement.

thread_binding: Optional[tir.IterVar]

The thread this loop binds to. Only valid if kind is ThreadBinding

annotations: Optional[Mapping[str, Object]]

Additional annotation hints.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • loop_var (Var)

  • min (PrimExpr)

  • extent (PrimExpr)

  • kind (ForKind)

  • body (Stmt)

  • thread_binding (IterVar | None)

  • annotations (Mapping[str, Object])

  • span (Span | None)

class tvm.tir.ForKind(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[源代码]#

The kind of the for loop.

note#

ForKind can change the control flow semantics of the loop and need to be considered in all TIR passes.

class tvm.tir.GE(a, b, span=None)[源代码]#

GE node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.GT(a, b, span=None)[源代码]#

GT node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.IfThenElse(condition, then_case, else_case, span=None)[源代码]#

IfThenElse node.

Parameters#

conditionPrimExpr

The expression

then_caseStmt

The statement to execute if condition is true.

else_caseOptional[Stmt]

The statement to execute if condition is false.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • condition (PrimExpr)

  • then_case (Stmt)

  • else_case (Stmt | None)

  • span (Span | None)

class tvm.tir.IndexMap(initial_indices, final_indices, inverse_index_map)[源代码]#

A mapping from multi-dimensional indices to another set of multi-dimensional indices

Parameters#

initial_indicesList[Var]

Variables representing the indices prior to remapping.

final_indicesList[PrimExpr]

Expressions defining the indices after remapping.

inverse_index_mapUnion[Callable, Optional[IndexMap]]

The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user's responsibility to ensure the correctness of the pre-defined inverse index map.

static from_func(mapping_function, ndim=None, inverse_index_map=None, *, index_dtype='int64')[源代码]#

Create an index map from a function

Parameters#

mapping_function : Callable

The function to map from source indices to target indices. The function should accept tir.Var parameters and return a either a tir.PrimExpr, or a list of tir.PrimExpr. Returning a tir.PrimExpr is equivalent to returning a list of length 1 containing that tir.PrimExpr.

ndim: Optional[int]

The dimensionality of the buffer to which this transformation should be applied. If mapping_function uses variadic argument *args, ndim must be specified. If mapping_function does not use variadic arguments, ndim is optional.

inverse_index_mapUnion[Callable, Optional[IndexMap]]

The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user's responsibility to ensure the correctness of the pre-defined inverse index map.

Returns#

index_map: IndexMap

Returns an IndexMap representing the mapping_function.

参数:
static from_func_with_separators(mapping_function, ndim=None, inverse_index_map=None, *, index_dtype='int64')[源代码]#

Create an index map from a function

Parameters#

mapping_function : Callable

The function to map from source indices to target indices. The function should accept tir.Var parameters and return either a tir.PrimExpr or a list. Each element of the returned list should be either a tir.PrimExpr or the object IndexMap.AXIS_SEPARATOR. Returning a tir.PrimExpr is equivalent to returning a list of length 1 containing that tir.PrimExpr.

ndim: Optional[int]

The dimensionality of the buffer to which this transformation should be applied. If mapping_function uses variadic argument *args, ndim must be specified. If mapping_function does not use variadic arguments, ndim is optional.

inverse_index_mapUnion[Callable, Optional[IndexMap]]

The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user's responsibility to ensure the correctness of the pre-defined inverse index map.

index_dtypestr

The default index dtype to use for input iters in the mapping function.

Returns#

ret: Tuple[IndexMap, List[int]]

Returns a tuple whose first element is an IndexMap representing the mapping_function, and whose second index is a list of indices at which IndexMap.AXIS_SEPARATOR occurred.

参数:
inverse(shape)[源代码]#

Return the inverse of the map

Throws an error if the function is not bijective.

Parameters#

shape: List[Union[Range,PrimExpr]]

The region over which the inverse should be determined. Used for validating that the mapping is bijective over this range.

Returns#

inverse : IndexMap

The inverse

参数:

shape (List[Range | PrimExpr])

返回类型:

IndexMap

is_equivalent_to(other_map)[源代码]#

Return if the index maps are equivalent.

Parameters#

other_map: IndexMap

The IndexMap to which the comparison should be made.

Returns#

is_equivalent: bool

True if the two mappings represent the same transformation, otherwise False

参数:

other_map (IndexMap)

返回类型:

bool

map_indices(indices)[源代码]#

Apply the index map to a set of indices

Parameters#

indicesList[PrimExpr]

The indices to be mapped

Returns#

resultList[PrimExpr]

The mapped indices

参数:

indices (List[PrimExpr])

返回类型:

List[PrimExpr]

map_ndarray(arr_src)[源代码]#

Apply thie index map to transform the layout of the input NDArray

Parameters#

arr_srcruntime.NDArray

The NDArray to be transformed

Returns#

arr_dstruntime.NDArray

The transformed NDArray

参数:

arr_src (NDArray)

返回类型:

NDArray

map_shape(shape)[源代码]#

Apply the index map to a buffer shape

Parameters#

shapeList[PrimExpr]

The buffer shape to be mapped

Returns#

resultList[PrimExpr]

The mapped shape

参数:

shape (List[PrimExpr])

返回类型:

List[PrimExpr]

non_surjective_inverse(shape)[源代码]#

Return the inverse of the map

Can be applied to transformations that introduce padding.

Parameters#

shape: List[Union[Range,PrimExpr]]

The region over which the inverse should be determined. Used for determining the predicate.

Returns#

result : Tuple[IndexMap, PrimExpr]

The inverse, and a predicate for which the inverse maps to a valid index in the input range.

Examples#

index_map = IndexMap.from_func(lambda i: [i//4, i%4])
inverse_map, predicate = index_map.non_surjective_inverse([14])
assert inverse_map.is_equivalent_to(IndexMap.from_func(lambda j,k: [4*j + k])
print(predicate) # Prints "(axis0==3) && (axis2 >= 2)"
参数:

shape (List[Range | PrimExpr])

返回类型:

Tuple[IndexMap, PrimExpr]

参数:
  • initial_indices (List[Var])

  • final_indices (List[PrimExpr])

class tvm.tir.IntImm(dtype, value, span=None)[源代码]#

Int constant.

Parameters#

dtypestr

The data type

valueint

The constant value.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • dtype (str)

  • value (int)

  • span (Span | None)

class tvm.tir.IterVar(dom, var, iter_type, thread_tag='', span=None)[源代码]#

Represent iteration variable.

IterVar represents axis iterations in the computation.

Parameters#

domRange

The domain of the iteration.

varUnion[Var, str]

The internal variable that is used for iteration.

iter_typeint

The iteration type.

thread_tagstr

The thread type tag.

spanOptional[Span]

The location of this expression in the source code.

See Also#

te.thread_axis: Create thread axis IterVar. te.reduce_axis: Create reduce axis IterVar.

参数:
  • dom (Range)

  • var (Var)

  • iter_type (int)

  • thread_tag (str)

  • span (Span | None)

class tvm.tir.LE(a, b, span=None)[源代码]#

LE node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.LT(a, b, span=None)[源代码]#

LT node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Layout[源代码]#

Layout is composed of upper cases, lower cases and numbers, where upper case indicates a primal axis and the corresponding lower case with factor size indicates the subordinate axis. For example, NCHW16c can describe a 5-D tensor of [batch_size, channel, height, width, channel_block]. Here subordinate axis channel_block=16 is the factor size of the primal axis C (channel).

See Also#

layout : Declare a layout

factor_of(axis)[源代码]#

Get the factor size of the subordinate axis.

Parameters#

axisstr

The axis name, need to be [a-z,A-Z]

Returns#

factorint

the size of the subordinate-axis of axis (if axis is a primal-axis), or the size of axis itself (if axis is a subordinate-axis). Return -1 if axis is not in the layout.

index_of(axis)[源代码]#

Get the index of an axis

Parameters#

axisstr

The axis name, need to be [a-z,A-Z]

Returns#

indexint

The index of the axis, -1 if not found.

class tvm.tir.Let(var, value, body, span=None)[源代码]#

Let node.

Parameters#

varVar

The variable in the binding.

valuePrimExpr

The value in to be bound.

bodyPrimExpr

The body expression.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • var (Var)

  • value (PrimExpr)

  • body (PrimExpr)

  • span (Span | None)

class tvm.tir.LetStmt(var, value, body, span=None)[源代码]#

LetStmt node.

Parameters#

varVar

The variable in the binding.

valuePrimExpr

The value in to be bound.

bodyStmt

The body statement.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • var (Var)

  • value (PrimExpr)

  • body (Stmt)

  • span (Span | None)

class tvm.tir.MatchBufferRegion(buffer, source)[源代码]#

MatchBufferRegion node.

Parameters#

bufferBuffer

The target buffer

sourceBufferRegion

The region of source buffer

参数:
class tvm.tir.Max(a, b, span=None)[源代码]#

Max node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Min(a, b, span=None)[源代码]#

Min node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Mod(a, b, span=None)[源代码]#

Mod node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Mul(a, b, span=None)[源代码]#

Mul node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.NE(a, b, span=None)[源代码]#

NE node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Not(a, span=None)[源代码]#

Not node.

Parameters#

aPrimExpr

The input value

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • span (Span | None)

class tvm.tir.Or(a, b, span=None)[源代码]#

Or node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.Prefetch(buffer, bounds, span=None)[源代码]#

Prefetch node.

Parameters#

bufferBuffer

The buffer to be prefetched.

boundsList[Range]

The bounds to be prefetched.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • buffer (Buffer)

  • bounds (List[Range])

  • span (Span | None)

class tvm.tir.PrimFunc(params, body, ret_type=None, buffer_map=None, attrs=None, span=None)[源代码]#

A function declaration expression.

Parameters#

params: List[Union[tvm.tir.Var, tvm.tir.Buffer]]

List of input parameters to the function.

body: tvm.tir.Stmt

The body of the function.

ret_type: tvm.ir.Type

The return type annotation of the function.

buffer_mapMap[tvm.tir.Var, tvm.tir.Buffer]

The buffer binding map.

attrs: Optional[tvm.Attrs]

Attributes of the function, can be None

spanOptional[Span]

The location of this itervar in the source code.

specialize(param_map)[源代码]#

Specialize parameters of PrimFunc

Parameters#

param_mapMapping[Var, Union[PrimExpr, Buffer]]

The mapping from function params to the instance

Examples#

We can define a Meta TIR function with symbolic shape:

@T.prim_func
def mem_copy(a: T.handle, b: T.handle, m: T.int32, n: T.int32) -> None:
    A = T.match_buffer(a, (m, n), "float32")
    B = T.match_buffer(b, (m, n), "float32")

    for i, j in T.grid(m, n):
        with T.block():
            vi, vj = T.axis.remap("SS", [i, j])
            B[vi, vj] = A[vi, vj]

Then we can make it specialized with given shapes or buffers.

a, _, m, n = mem_copy.params
func = mem_copy.specialize({a: tir.decl_buffer((16, 16))})
# or
func = mem_copy.specialize({n: 16, m: 16})

The specialized function:

@T.prim_func
def mem_copy_16_16(a: T.handle, b: T.handle) -> None:
    A = T.match_buffer(a, (16, 16), "float32")
    B = T.match_buffer(b, (16, 16), "float32")

    for i, j in T.grid(16, 16):
        with T.block():
            vi, vj = T.axis.remap("SS", [i, j])
            B[vi, vj] = A[vi, vj]

Returns#

funcPrimFunc

The new function with parameter specialized

参数:

param_map (Mapping[Var, PrimExpr | Buffer])

with_body(new_body, span=None)[源代码]#

Create a new PrimFunc with the same set signatures but a new body.

Parameters#

new_bodyStmt

The new body.

spanOptional[Span]

The location of this itervar in the source code.

Returns#

new_funcPrimFunc

The created new function.

参数:

span (Span | None)

class tvm.tir.ProducerLoad(producer, indices, span=None)[源代码]#

Producer load node.

Parameters#

producerDataProducer

The buffer to be loaded.

indicesList[PrimExpr]

The buffer indices.

spanOptional[Span]

The location of this expression in the source code.

参数:
class tvm.tir.ProducerRealize(producer, bounds, condition, body, storage_scope='', span=None)[源代码]#

ProducerRealize node.

Parameters#

producerDataProducer

The data producer.

boundsList[Range]

The bound of realize

conditionPrimExpr

The realize condition.

bodyStmt

The realize body

storage_scopestr

The storage scope associated with this realization

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • producer (DataProducer)

  • bounds (List[Range])

  • condition (PrimExpr)

  • body (Stmt)

  • storage_scope (str)

  • span (Span | None)

class tvm.tir.ProducerStore(producer, value, indices, span=None)[源代码]#

ProducerStore node.

Parameters#

producerDataProducer

The data producer.

valuePrimExpr

The value to be stored.

indiceslist of Expr

The index arguments of the store.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • producer (DataProducer)

  • value (PrimExpr)

  • indices (List[PrimExpr])

  • span (Span | None)

class tvm.tir.Ramp(base, stride, lanes, span=None)[源代码]#

Ramp node.

Parameters#

basePrimExpr

The base expression.

stridePrimExpr

The stride of the ramp.

lanesPrimExpr

The lanes of the expression.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • base (PrimExpr)

  • stride (PrimExpr)

  • lanes (PrimExpr)

  • span (Span | None)

class tvm.tir.Reduce(combiner, src, rdom, condition, value_index, init=None, span=None)[源代码]#

Reduce node.

Parameters#

combinerCommReducer

The combiner.

srclist of Expr

The source expression.

rdomlist of IterVar

The iteration domain

conditionPrimExpr

The reduce condition.

value_indexint

The value index.

initlist of Expr

The initial value for output. This can be an int, float or ProducerLoad

spanOptional[Span]

The location of this expression in the source code.

参数:
class tvm.tir.Select(condition, true_value, false_value, span=None)[源代码]#

Select node.

Note#

Select may compute both true_value and false_value. Use tvm.tir.if_then_else instead if you want to get a conditional expression that only evaluates the correct branch.

Parameters#

conditionPrimExpr

The condition expression.

true_valuePrimExpr

The value to take when condition is true.

false_valuePrimExpr

The value to take when condition is false.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • condition (PrimExpr)

  • true_value (PrimExpr)

  • false_value (PrimExpr)

  • span (Span | None)

class tvm.tir.SeqStmt(seq, span=None)[源代码]#

Sequence of statements.

Parameters#

seqList[Stmt]

The statements

spanOptional[Span]

The location of the stmt in the source code.

参数:
class tvm.tir.Shuffle(vectors, indices, span=None)[源代码]#

Shuffle node.

Parameters#

vectorsList[PrimExpr]

The vectors

indicesList[PrimExpr]

The indices

spanOptional[Span]

The location of this expression in the source code.

参数:
  • vectors (List[PrimExpr])

  • indices (List[PrimExpr])

  • span (Span | None)

class tvm.tir.SizeVar(name, dtype, span=None)[源代码]#
Symbolic variable to represent a tensor index size

which is greater or equal to zero.

Parameters#

namestr

The name

dtypeUnion[str, ir.Type]

The data type

spanOptional[Span]

The location of this expression in the source code.

参数:
  • name (str)

  • dtype (str)

  • span (Span | None)

class tvm.tir.Stmt[源代码]#

Base class of all the statements.

class tvm.tir.StringImm(value, span=None)[源代码]#

String constant.

Parameters#

valuestr

The value of the function.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • value (str)

  • span (Span | None)

class tvm.tir.Sub(a, b, span=None)[源代码]#

Sub node.

Parameters#

aPrimExpr

The left hand operand.

bPrimExpr

The right hand operand.

spanOptional[Span]

The location of this expression in the source code.

参数:
  • a (PrimExpr)

  • b (PrimExpr)

  • span (Span | None)

class tvm.tir.TensorIntrin(desc, impl)[源代码]#

A tensor intrinsic.

Parameters#

descPrimFunc

The function to describe the computation.

implPrimFunc

The function of the implementation for the execution.

static get(name, allow_missing=False)[源代码]#

Look up a tensor intrinsic by its name.

Parameters#

namestr

The name of the TensorIntrin to look up.

allow_missingbool

Whether to allow missing tensor intrin. If False, raise an error if the tensor intrin

doesn't exist.

Returns#

resultOptional[TensorIntrin]

The TensorIntrin with the specified name, or None if not found.

参数:
返回类型:

TensorIntrin | None

static register(name, desc, impl, override=False)[源代码]#

Register a tensor intrinsic with its name.

Parameters#

namestr

The name of the TensorIntrin to register.

descPrimFunc

The function to describe the computation.

implPrimFunc

The function of the implementation for the execution.

override: bool

Whether override existing intrinsic.

参数:
class tvm.tir.Var(name, dtype, span=None)[源代码]#

Symbolic variable.

Parameters#

namestr

The name

dtypeUnion[str, ir.Type]

The data type

spanOptional[Span]

The location of this expression in the source code.

参数:
  • name (str)

  • dtype (str)

  • span (Span | None)

class tvm.tir.While(condition, body, span=None)[源代码]#

While node.

Parameters#

conditionPrimExpr

The termination condition.

bodyStmt

The body statement.

spanOptional[Span]

The location of the stmt in the source code.

参数:
  • condition (PrimExpr)

  • body (Stmt)

  • span (Span | None)

tvm.tir.TVMBackendAllocWorkspace(device_type, device_id, nbytes, dtype_code_hint, dtype_bits_hint)[源代码]#

Backend function to allocate temporal workspace

Parameters#

device_typeint

The device type which the space will be allocated.

device_idint

The device id which the space will be allocated.

nbytesint

The size of the space requested.

dtype_code_hintint

The type code of the array elements. Only used in certain backends such as OpenGL.

dtype_bits_hintint

The type bits of the array elements. Only used in certain backends such as OpenGL.

Returns#

callPrimExpr

The call expression.

tvm.tir.TVMBackendFreeWorkspace(device_type, device_id, ptr)[源代码]#

Backend function to free temporal workspace.

Parameters#

device_typeint

The device type which the space will be allocated.

device_idint

The device id which the space will be allocated.

ptrVar

The result allocated space pointer.

Returns#

callPrimExpr

The call expression.

tvm.tir.abs(x, span=None)[源代码]#

Get absolute value of the input element-wise.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.acos(x)[源代码]#

Take acos of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.acosh(x)[源代码]#

Take acos of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.add(lhs, rhs, span=None)[源代码]#

Generic add operator.

Parameters#

lhsobject

The left operand.

rhsobject

The right operand.

spanOptional[Span]

The location of this operator in the source.

Returns#

optvm.Expr

The result Expr of add operaton.

tvm.tir.address_of(buffer_load, span=None)[源代码]#

Returns the address of an element in the buffer

Parameters#

buffer_load: BufferLoad

The buffer load.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

tvm.tir.all(*args, span=None)[源代码]#
Create a new expression of the intersection of all conditions in the

arguments

Parameters#

argslist

List of symbolic boolean expressions

spanOptional[Span]

The location of this operator in the source code.

Returns#

expr: Expr

Expression

tvm.tir.any(*args, span=None)[源代码]#

Create a new experssion of the union of all conditions in the arguments

Parameters#

argslist

List of symbolic boolean expressions

spanOptional[Span]

The location of this operator in the source code.

Returns#

expr: Expr

Expression

tvm.tir.asin(x)[源代码]#

Take asin of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.asinh(x)[源代码]#

Take asinh of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.assume(cond=None)[源代码]#

Provide a true statement that can be used for simplifications

Parameters#

condExpr

The constraint condition.

Returns#

callPrimExpr

The call expression.

tvm.tir.atan(x)[源代码]#

Take atan of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.atan2(x1, x2)[源代码]#

Take arctan2(x1, x2).

Parameters#

x1PrimExpr

Input argument.

x2PrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.atanh(x)[源代码]#

Take atanh of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.bijective_layout(src_layout, dst_layout)[源代码]#

Create a bijective layout mapping.

Parameters#

src_layoutstr or Layout

source layout.

dst_layoutstr or Layout

destination layout.

Returns#

bijective_layoutBijectiveLayout

The created bijective layout

参数:
返回类型:

BijectiveLayout

tvm.tir.bitwise_and(x, y, span=None)[源代码]#

Take bitwise and of two values

Parameters#

xPrimExpr

Left operand

yPrimExpr

Right operand

spanOptional[Span]

The location of this operator in the source code.

Returns#

resPrimExpr

The result.

tvm.tir.bitwise_not(x, span=None)[源代码]#

Take bitwise not of input value

Parameters#

xPrimExpr

Input operand

spanOptional[Span]

The location of this operator in the source code.

Returns#

resPrimExpr

The result.

tvm.tir.bitwise_or(x, y, span=None)[源代码]#

Take bitwise or of two values

Parameters#

xPrimExpr

Left operand

yPrimExpr

Right operand

spanOptional[Span]

The location of this operator in the source code.

Returns#

resPrimExpr

The result.

tvm.tir.bitwise_xor(x, y, span=None)[源代码]#

Take bitwise xor of two values

Parameters#

xPrimExpr

Left operand

yPrimExpr

Right operand

spanOptional[Span]

The location of this operator in the source code.

Returns#

resPrimExpr

The result.

tvm.tir.call_cpacked(*args, span=None)[源代码]#

Build expression by call an external packed function.

Same as call_packed, except that the first argument is the function name (as in call_extern), and the last argument is the resource handle.

Parameters#

argslist of Expr or Buffer.

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

See Also#

te.extern : Create tensor with extern function call.

tvm.tir.call_cpacked_lowered(*args, span=None)[源代码]#

Lowered version of call c-packed. Same as call_packed, except that the first argument is the function name (as in call_extern), and the last argument is the resource handle.

Parameters#

argslist of Expr or Buffer.

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

See Also#

te.extern : Create tensor with extern function call.

tvm.tir.call_extern(dtype, func_name, *args, span=None)[源代码]#

Build expression by calling a extern function.

Parameters#

dtypestr

The data type of the result.

func_name: str

The extern function name.

argslist

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

tvm.tir.call_intrin(dtype, func_name, *args, span=None)[源代码]#

Build expression by calling an intrinsic function.

Intrinsics can be overloaded with multiple data types via the intrinsic translation rule.

Parameters#

dtypestr

The data type of the result.

func_name: str

The intrinsic function name.

argslist

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

tvm.tir.call_llvm_intrin(dtype, name, *args, span=None)[源代码]#

Build expression by calling a llvm intrinsic function

Parameters#

dtypestr

The data type of the result.

namestr

The name of the llvm intrinsic function.

argslist

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

tvm.tir.call_llvm_pure_intrin(dtype, name, *args, span=None)[源代码]#

Build expression by calling a pure llvm intrinsic function

Parameters#

dtypestr

The data type of the result.

namestr

The name of the llvm intrinsic function.

argslist

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

tvm.tir.call_packed(*args, span=None)[源代码]#

Build expression by call an external packed function.

The argument to packed function can be Expr or Buffer. The argument is the corresponding POD type when Expr is presented.

When the argument is Buffer, the corresponding PackedFunc will receive an TVMArrayHandle whose content is valid during the callback period. If the PackedFunc is a python callback, then the corresponding argument is NDArray.

Parameters#

argslist of Expr or Buffer.

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

See Also#

te.extern : Create tensor with extern function call.

tvm.tir.call_packed_lowered(*args, span=None)[源代码]#

Lowered version of call packed. The argument to packed function can be Expr or Buffer. The argument is the corresponding POD type when Expr is presented. When the argument is Buffer, the corresponding PackedFunc will recieve an TVMArrayHandle whose content is valid during the callback period. If the PackedFunc is a python callback, then the corresponding argument is NDArray.

Parameters#

argslist of Expr or Buffer.

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

See Also#

te.extern : Create tensor with extern function call.

tvm.tir.call_pure_extern(dtype, func_name, *args, span=None)[源代码]#

Build expression by calling a pure extern function.

Parameters#

dtypestr

The data type of the result.

func_name: str

The extern function name.

argslist

Positional arguments.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

tvm.tir.call_tir(global_var, *args)[源代码]#

Performs a call into another PrimFunc in the same IRModule

Returns#

callPrimExpr

The call expression.

参数:

global_var (GlobalVar)

tvm.tir.ceil(x, span=None)[源代码]#

Take ceil of float input x.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.ceildiv(lhs, rhs, span=None)[源代码]#

Generic ceildiv operator.

Parameters#

lhsobject

The left operand.

rhsobject

The right operand.

spanOptional[Span]

The location of this operator in the source.

Returns#

optvm.Expr

The result Expr of ceildiv operaton.

tvm.tir.clz(x)[源代码]#

Count leading zero bits of an integer x.

Parameters#

xPrimExpr

Input 32 or 64 bit integer. The result is undefined if the input is 0.

Returns#

yPrimExpr

The result.

tvm.tir.comm_reducer(fcombine, fidentity, name='reduce')[源代码]#

Create a commutative reducer for reduction.

Parameters#

fcombinefunction(Expr -> Expr -> Expr)

A binary function which takes two Expr as input to return a Expr.

fidentityfunction(str -> Expr)

A function which takes a type string as input to return a const Expr.

Returns#

reducerfunction

A function which creates a reduce expression over axis. There are two ways to use it:

  1. accept (expr, axis, where) to produce an Reduce Expr on specified axis;

  2. simply use it with multiple Exprs.

Example#

n = te.var("n")
m = te.var("m")
mysum = te.comm_reducer(lambda x, y: x+y,
    lambda t: tvm.tir.const(0, dtype=t), name="mysum")
A = te.placeholder((n, m), name="A")
k = te.reduce_axis((0, m), name="k")
B = te.compute((n,), lambda i: mysum(A[i, k], axis=k), name="B")
tvm.tir.copysign(x1, x2)[源代码]#

Change the sign of x1 to that of x2, element-wise.

Parameters#

x1PrimExpr

Input argument.

x2PrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.cos(x)[源代码]#

Take cos of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.cosh(x)[源代码]#

Take cosh of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.create_barriers(barrier_count)[源代码]#

TVM intrinsic to create N barriers

Parameters#

barrier_countint

The number of barriers to create.

Returns#

callPrimExpr

The call expression.

tvm.tir.decl_buffer(shape, dtype=None, name='buffer', data=None, strides=None, elem_offset=None, scope='', data_alignment=-1, offset_factor=0, buffer_type='', axis_separators=None, span=None)[源代码]#

Declare a new symbolic buffer.

Normally buffer is created automatically during lower and build. This is only needed if user want to specify their own buffer layout.

See the note below for detailed discussion on usage of buffer.

Parameters#

shapetuple of Expr

The shape of the buffer.

dtypestr, optional

The data type of the buffer.

namestr, optional

The name of the buffer.

datatir.Var, optional

The data pointer in the buffer.

strides: array of Expr

The stride of the buffer.

elem_offset: Expr, optional

The beginning offset of the array to data. In terms of number of elements of dtype.

scope: str, optional

The storage scope of the buffer, if not global. If scope equals empty string, it means it is global memory.

data_alignment: int, optional

The alignment of data pointer in bytes. If -1 is passed, the alignment will be set to TVM's internal default.

offset_factor: int, optional

The factor of elem_offset field, when set, elem_offset is required to be multiple of offset_factor. If 0 is pssed, the alignment will be set to 1. if non-zero is passed, we will created a Var for elem_offset if elem_offset is not None.

buffer_type: str, optional, {"", "auto_broadcast"}

auto_broadcast buffer allows one to implement broadcast computation without considering whether dimension size equals to one. TVM maps buffer[i][j][k] -> buffer[i][0][k] if dimension j's shape equals 1.

axis_separatorslist of int, optional

If passed, a list of separators between groups of axes, each of which is flattened to an output axis. For flat memory spaces, should either be None, or an empty list.

span: Optional[Span]

The location of the decl_buffer creation in the source.

Returns#

buffertvm.tir.Buffer

The created buffer

Example#

Here's an example of how broadcast buffer can be used to define a symbolic broadcast operation,

m0, m1, m2 = te.var("m0"), te.var("m1"), te.var("m2")
n0, n1, n2 = te.var("n0"), te.var("n1"), te.var("n2")
o0, o1, o2 = te.var("o0"), te.var("o1"), te.var("o2")
A = te.placeholder((m0, m1, m2), name='A')
B = te.placeholder((n0, n1, n2), name='B')
C = te.compute((o0, o1, o2), lambda i, j, k: A[i, j, k] + B[i, j, k], name='C')
Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name="Ab", buffer_type="auto_broadcast")
Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name="Bb", buffer_type="auto_broadcast")
s = te.create_schedule(C.op)
fadd = tvm.build(s, [A, B, C], target='llvm', name='bcast_add', binds={A:Ab, B:Bb})
dev = tvm.cpu(0)
a = tvm.nd.array(np.random.uniform(size=(2, 4, 3)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(2, 1, 3)).astype(B.dtype), dev)
c = tvm.nd.array(np.zeros((2, 4, 3), dtype=C.dtype), dev)
fadd(a, b, c)
tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())

Note#

Buffer data structure reflects the DLTensor structure in dlpack. While DLTensor data structure is very general, it is usually helpful to create function that only handles specific case of data structure and make compiled function benefit from it.

If user pass strides and elem_offset is passed as None when constructing the function, then the function will be specialized for the DLTensor that is compact and aligned. If user pass a fully generic symbolic array to the strides, then the resulting function becomes fully generic.

tvm.tir.div(a, b, span=None)[源代码]#

Compute a / b as in C/C++ semantics.

Parameters#

aPrimExpr

The left hand operand, known to be non-negative.

bPrimExpr

The right hand operand, known to be non-negative.

spanOptional[Span]

The location of this operator in the source.

Returns#

resPrimExpr

The result expression.

Note#

When operands are integers, returns truncdiv(a, b, span).

tvm.tir.dp4a(vec1, vec2, acc=0)[源代码]#

Dot product of two int8x4 vectors and add an optional accumulator

Parameters#

vec1int8x4

The input vector.

vec2int8x4

The input vector.

accint32

The accumulator.

Returns#

callPrimExpr

The call expression.

tvm.tir.end_profile_intrinsic(id)[源代码]#

End profile intrinsic. Parameters ---------- id : int

The intrinsic id.

Returns#

callPrimExpr

The call expression.

tvm.tir.erf(x)[源代码]#

Take gauss error function of the input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.exp(x)[源代码]#

Take exponential of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.exp10(x)[源代码]#

Calculate 10**x

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.exp2(x)[源代码]#

Calculate 2**x

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.floor(x, span=None)[源代码]#

Take floor of float input x.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

参数:

x (PrimExprWithOp)

tvm.tir.floordiv(a, b, span=None)[源代码]#

Compute the floordiv of two expressions.

Parameters#

aPrimExpr

The left hand operand

bPrimExpr

The right hand operand

spanOptional[Span]

The location of this operator in the source.

Returns#

resPrimExpr

The result expression.

tvm.tir.floormod(a, b, span=None)[源代码]#

Compute the floormod of two expressions.

Parameters#

aPrimExpr

The left hand operand

bPrimExpr

The right hand operand

spanOptional[Span]

The location of this operator in the source.

Returns#

resPrimExpr

The result expression.

tvm.tir.fmod(x, y)[源代码]#

Return the remainder of x divided by y with the same sign as x.

Parameters#

xPrimExpr

Input argument.

yPrimExpr

Input argument.

Returns#

zPrimExpr

The result.

tvm.tir.get_active_lane_mask(dtype, base, limit)[源代码]#

Calculate a predicate mask given an upper bound (limit) and a current value (base).

It will be lowered to the llvm.get.active.lane.mask intrinsic. (https://llvm.org/docs/LangRef.html#llvm-get-active-lane-mask-intrinsics)

Parameters#

dtypestr

The data type of the result.

basePrimExpr

An expression reprsenting the base.

limitPrimExpr

An expression representing the limit.

tvm.tir.get_vscale_expr(dtype, min_size=128)[源代码]#

Create a datatype dependent scalable expression.

Parameters#

dtypeUnion[str, tvm.DataType]

Element data type.

min_sizeint

The minimum size of the scalable vector in bits.

参数:
  • dtype (str | DataType)

  • min_size (int)

返回类型:

PrimExpr

tvm.tir.hypot(x1, x2)[源代码]#

Equivalent to sqrt(x1**2 + x2**2), element-wise.

Parameters#

x1PrimExpr

Input argument.

x2PrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.if_then_else(cond, t, f, span=None)[源代码]#

Conditional selection expression.

Parameters#

condPrimExpr

The condition

tPrimExpr

The result expression if cond is true.

fPrimExpr

The result expression if cond is false.

spanOptional[Span]

The location of this operator in the source.

Returns#

resultNode

The result of conditional expression.

Note#

Unlike Select, if_then_else will not execute the branch that does not satisfy the condition. You can use it to guard against out of bound access. Unlike Select, if_then_else cannot be vectorized if some lanes in the vector have different conditions.

tvm.tir.indexdiv(a, b, span=None)[源代码]#

Compute floor(a / b) where a and b are non-negative.

Parameters#

aPrimExpr

The left hand operand, known to be non-negative.

bPrimExpr

The right hand operand, known to be non-negative.

spanOptional[Span]

The location of this operator in the source.

Returns#

resPrimExpr

The result expression.

Note#

Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness.

tvm.tir.indexmod(a, b, span=None)[源代码]#

Compute the remainder of indexdiv. a and b are non-negative.

Parameters#

aPrimExpr

The left hand operand, known to be non-negative.

bPrimExpr

The right hand operand, known to be non-negative.

spanOptional[Span]

The location of this operator in the source.

Returns#

resPrimExpr

The result expression.

Note#

Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness.

tvm.tir.infinity(dtype, span=None)[源代码]#

infinity value of dtype

Parameters#

dtypestr

The data type.

spanOptional[Span]

The location of this operator in the source code.

Returns#

valuetvm.Expr

The infinity value of dtype.

参数:
  • dtype (str)

  • span (Span | None)

返回类型:

Any

tvm.tir.isfinite(x, span=None)[源代码]#

Check if input value is finite.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.isinf(x, span=None)[源代码]#

Check if input value is infinite.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.isnan(x, span=None)[源代码]#

Check if input value is Nan.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.isnullptr(x, span=None)[源代码]#

Check if input value is nullptr.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.layout(layout_str, dtype='int32')[源代码]#

Create a layout node from a string.

Parameters#

layout_strstr

A layout representation is composed of upper cases, lower cases and numbers, where upper case indicates a primal axis and the corresponding lower case with factor size indicates the subordinate axis. For example, NCHW16c can describe a 5-D tensor of [batch_size, channel, height, width, channel_block]. Here subordinate axis channel_block=16 is the factor size of the primal axis C (channel).

dtypestr

The dtype of generated axes vars in the returned layout. It is required to be integer type.

Returns#

layoutLayout

The created layout

参数:
  • layout_str (str)

  • dtype (str)

返回类型:

Layout

tvm.tir.ldexp(x1, x2)[源代码]#

Returns x1 * (2 ** x2).

Parameters#

x1PrimExpr

Input argument.

x2PrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.likely(cond, span=None)[源代码]#

Mark condition as likely.

Parameters#

condPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The marked expression.

tvm.tir.log(x)[源代码]#

Take log of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.log10(x)[源代码]#

Take log10 of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.log1p(x)[源代码]#

Take log(x + 1) with respect to input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.log2(x)[源代码]#

Take log2 of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.lookup_param(param_name, span=None)[源代码]#

Returns the param by name

Parameters#

param_namestr

The name of param.

spanOptional[Span]

The location of this operator in the source code.

Returns#

callPrimExpr

The call expression.

tvm.tir.make_filled_simdgroup_matrix(d, index, value, col=8, row=8)[源代码]#

Create a filled SIMDGroup matrix

Parameters#

dvar

The simdgroup var

indexPrimExpr

The index of the matrix.

valuePrimExpr

The value to fill.

colint

The number of columns.

rowint

The number of rows.

Returns#

callPrimExpr

The call expression.

参数:
  • d (Var)

  • index (PrimExpr)

  • value (PrimExpr)

  • col (int)

  • row (int)

tvm.tir.max(expr, axis, where=None, init=None, *args)#

Create a max expression over axis.

Parameters#

exprPrimExpr

The source expression.

axisIterVar

The reduction IterVar axis

whereoptional, Expr

Filtering predicate of the reduction.

Returns#

valuePrimExpr

The result value.

Example#

m = te.var("m")
n = te.var("n")
A = te.placeholder((m, n), name="A")
k = te.reduce_axis((0, n), name="k")

# there are two way to use this max reducer:
# mode 1, accept (expr, axis, where) to produce an Reduce Expr
# tvm.max represents tvm.te.max or tvm.tir.max.
B = te.compute((m,), lambda i: tvm.max(A[i, k], axis=k), name="B")

# mode 2, simply use it with multiple Exprs:
max_res = tvm.max(m, n)
tvm.tir.max_value(dtype, span=None)[源代码]#

maximum value of dtype

Parameters#

dtypestr

The data type.

spanOptional[Span]

The location of this operator in the source code.

Returns#

valuetvm.Expr

The maximum value of dtype.

参数:
  • dtype (str)

  • span (Span | None)

返回类型:

Any

tvm.tir.min(expr, axis, where=None, init=None, *args)#

Create a min expression over axis.

Parameters#

exprPrimExpr

The source expression.

axisIterVar

The reduction IterVar axis

whereoptional, Expr

Filtering predicate of the reduction.

Returns#

valuePrimExpr

The result value.

Example#

m = te.var("m")
n = te.var("n")
A = te.placeholder((m, n), name="A")
k = te.reduce_axis((0, n), name="k")

# there are two way to use this min reducer:
# mode 1, accept (expr, axis, where) to produce an Reduce Expr
# tvm.min represents tvm.te.min or tvm.tir.min.
B = te.compute((m,), lambda i: tvm.min(A[i, k], axis=k), name="B")

# mode 2, simply use it with multiple Exprs:
min_res = tvm.min(m, n)
tvm.tir.min_value(dtype, span=None)[源代码]#

minimum value of dtype

Parameters#

dtypestr

The data type.

spanOptional[Span]

The location of this operator in the source code.

Returns#

valuetvm.Expr

The minimum value of dtype.

tvm.tir.mma_fill(dtype, local_size, local_ptr, offset)[源代码]#

TVM intrinsic for zero-initalizing an MMA accumulation registor

Parameters#

dtypestr

The data type of the result.

local_sizeIntImm

The number of elements.

local_ptrVar

The destination pointer variable.

offsetExpr

The destination offset.

Returns#

callPrimExpr

The call expression.

tvm.tir.mma_store(dtype, m, n, dst_ptr, src_ptr, src_offset, dst_stride)[源代码]#

TVM intrinsic for storing the result of PTX MMA into a destination pointer

Parameters#

dtypestr

The data type of the result.

mIntImm

The shape of mma fragment.

nIntImm

The shape of mma fragment.

dst_ptrVar

The destination pointer variable.

src_ptrVar

The source pointer variable.

src_offsetExpr

The source offset.

dst_strideVar

The destination stride.

Returns#

callPrimExpr

The call expression.

tvm.tir.multiply(lhs, rhs, span=None)[源代码]#

Generic multiply operator.

Parameters#

lhsobject

The left operand.

rhsobject

The right operand.

spanOptional[Span]

The location of this operator in the source.

Returns#

optvm.Expr

The result Expr of multiply operaton.

tvm.tir.nearbyint(x, span=None)[源代码]#

Round elements of the array to the nearest integer. This intrinsic uses llvm.nearbyint instead of llvm.round which is faster but will results different from te.round. Notably nearbyint rounds according to the rounding mode, whereas te.round (llvm.round) ignores that. For differences between the two see: https://en.cppreference.com/w/cpp/numeric/math/round https://en.cppreference.com/w/cpp/numeric/math/nearbyint

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.nextafter(x1, x2)[源代码]#

Return the next floating-point value after x1 towards x2.

Parameters#

x1PrimExpr

Input argument.

x2PrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.popcount(x)[源代码]#

Count the number of set bits in input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.pow(x, y, span=None)[源代码]#

x power y

Parameters#

xPrimExpr

Input argument.

yPrimExpr

The exponent

spanOptional[Span]

The location of this operator in the source code.

Returns#

zPrimExpr

The result.

tvm.tir.power(x, y, span=None)[源代码]#

x power y

Parameters#

xPrimExpr

Input argument.

yPrimExpr

The exponent

spanOptional[Span]

The location of this operator in the source code.

Returns#

zPrimExpr

The result.

tvm.tir.ptx_arrive_barrier(barrier_id)[源代码]#

TVM intrinsic for ptx barrier arrival using mbarrier.arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-arrive

Parameters#

barrier_idint

The ID of the barrier shared memory pointer.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_arrive_barrier_expect_tx(barrier_id, byte_count)[源代码]#

TVM intrinsic for ptx barrier arrival with expect tx using mbarrier.arrive.expect_tx https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-expect-tx-operation

Parameters#

barrier_idint

The ID of the barrier shared memory pointer.

byte_countint

Increases the tx count of the mbarrier object to track completion of addtional async transactions.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_commit_group()[源代码]#

TVM intrinsic for ptx async copy commit https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-commit-group

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_cp_async(dtype, shared_ptr, shared_offset, global_ptr, global_offset, bytes)[源代码]#

TVM intrinsic for ptx async copy from global to shared memory using cp.async https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async

Parameters#

dtypestr

The data type of the result.

shared_ptrVar

The shared memory pointer variable.

shared_offsetExpr

The offset of shared memory pointer.

global_ptrVar

The global memory pointer variable.

global_offsetExpr

The offset of global memory pointer.

bytesint

The data size to copy.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_cp_async_barrier(barrier_id)[源代码]#

TVM intrinsic for ptx async copy barrier using cp.async.mbarrier.arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-cp-async-mbarrier-arrive

Parameters#

barrier_idint

The ID of the barrier shared memory pointer.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_cp_async_bulk(dtype, shared_ptr, shared_offset, global_ptr, global_offset, bytes, barrier_id)[源代码]#

TVM intrinsic for ptx async copy from global to shared memory using cp.async.bulk https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk

Parameters#

dtypestr

The data type of the result.

shared_ptrVar

The shared memory pointer variable.

shared_offsetExpr

The offset of shared memory pointer.

global_ptrVar

The global memory pointer variable.

global_offsetExpr

The offset of global memory pointer.

bytesint

The data size to copy.

barrier_idint

The ID of the barrier shared memory pointer.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_init_barrier_thread_count(barrier_id, thread_count)[源代码]#

TVM intrinsic for ptx barrier initialization of thread count using mbarrier.init https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-init

Parameters#

barrier_idint

The ID of the barrier shared memory pointer.

thread_countint

Number of threads expected to arrive at the barrier.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_ldmatrix(dtype, trans, num, type, local_ptr, local_offset, smem_ptr, smem_offset)[源代码]#

TVM intrinsic for ptx load matrix from shared memory https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-ldmatrix

Parameters#

dtypestr

The data type of the result.

transbool

The matrix is loaded in column-major format.

numIntImm

The number of matrices.

typeLiteral[".b16"]

The data type of the matrices.

local_ptrVar

The local pointer variable.

local_offsetExpr

The offset of local pointer.

smem_ptrVar

The shared memory pointer variable.

smem_offsetExpr

The offset of shared memort pointer.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_mma(dtype, shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, multiplicand_a, a_index, multiplicand_b, b_index, accumulator, c_index, saturate, operator=None)[源代码]#

TVM intrinsic for ptx tensor core mma instructions https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-for-mma

Parameters#

dtypestr

The data type of the result.

shapestr

The shape of mma fragment.

A_layoutLiteral["row", "col"]

The layout of multiplicand fragment A.

B_layoutLiteral["row", "col"]

The layout of multiplicand fragment B.

A_dtypestr

The data type of multiplicand fragment A.

B_dtypestr

The data type of multiplicand fragment B.

C_dtypestr

The data type of accumulator fragment C.

multiplicand_aVar

The multiplicand fragment A variable.

a_indexExpr

The index of multiplicand fragment A.

multiplicand_bVar

The multiplicand fragment B variable.

b_indexExpr

The index of multiplicand fragment A.

accumulatorVar

The accumulator fragment C variable.

c_indexExpr

The index of accumulator fragment C.

saturatebool

The optional saturation at the output.

operatorOptional[Literal["xor", "and"]]

The 1-bit operator.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_mma_sp(dtype, shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, multiplicand_a, a_index, multiplicand_b, b_index, accumulator, c_index, metadata, meta_index, sparse_selector, saturate)[源代码]#

TVM intrinsic for sparse tensor core ptx instructions https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-for-sparse-mma

Parameters#

dtypestr

The data type of the result.

shapestr

The shape of mma fragment.

A_layoutLiteral["row", "col"]

The layout of multiplicand fragment A.

B_layoutLiteral["row", "col"]

The layout of multiplicand fragment B.

A_dtypestr

The data type of multiplicand fragment A.

B_dtypestr

The data type of multiplicand fragment B.

C_dtypestr

The data type of multiplicand fragment C.

multiplicand_aVar

The multiplicand fragment A variable.

a_indexExpr

The index of multiplicand fragment A.

multiplicand_bVar

The multiplicand fragment B variable.

b_indexExpr

The index of multiplicand fragment B.

accumulatorVar

The accumulator fragment C variable.

c_indexExpr

The index of accumulator fragment C.

metadataExpr

The metadata of operand.

meta_indexExpr

The metadata index of operand.

sparse_selectorExpr

The sparse selector indicating the thread that stores the metadata.

saturatebool

The optional saturation at the output.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_wait_barrier(barrier_id)[源代码]#

TVM intrinsic for ptx barrier wait using mbarrier.try_wait https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-test-wait-mbarrier-try-wait

Parameters#

barrier_idint

The ID of the barrier shared memory pointer.

Returns#

callPrimExpr

The call expression.

tvm.tir.ptx_wait_group(num)[源代码]#

TVM intrinsic for ptx async copy wait https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-wait-group

Parameters#

numint

The number of the most recent uncommitted pending cp.async groups to wait.

Returns#

callPrimExpr

The call expression.

tvm.tir.q_multiply_shift(x, y, q, s)[源代码]#

Execute a multiplication between two Q-numbers x and y followed by a right shift s. The mathematical expression is:

out = round(x*y*2^-s)

More about Q-numbers here: https://en.wikipedia.org/wiki/Q_(number_format) The rounding rule is to the nearest value, rounding half up (i.e., round(x.1) = x and round (x.5) = x+1)

Parameters#

xPrimExpr

First Q-number

yPrimExpr

Second Q-number

qPrimExpr

Number of fractional bits in x and y. Needs to be > 0

sPrimExpr

Integer shift

Returns#

yPrimExpr

The result.

tvm.tir.q_multiply_shift_per_axis(x, y, ls, rs, q, is_lshift_required, is_rshift_required)[源代码]#

Execute a multiplication between two Q-numbers x and y

Parameters#

xPrimExpr

First Q-number.

yPrimExpr

Second Q-number.

lsPrimExpr

Integer left shift.

rsPrimExpr

Integer right shift.

qIntImm

Number of fractional bits in x and y. Needs to be > 0.

is_lshift_requiredIntImm

Whether we need to do left shift or not.

is_rshift_requiredIntImm

Whether we need to do right shift or not.

Returns#

zPrimExpr

The result.

参数:
  • x (PrimExpr)

  • y (PrimExpr)

  • ls (PrimExpr)

  • rs (PrimExpr)

  • q (IntImm)

  • is_lshift_required (IntImm)

  • is_rshift_required (IntImm)

tvm.tir.reinterpret(dtype, value, span=None)[源代码]#

infinity value of dtype

Parameters#

dtypestr

The data type.

valuePrimExpr

The input value.

spanOptional[Span]

The location of this operator in the source code.

Returns#

valuetvm.Expr

The reinterpret cast value of dtype.

参数:

span (Span | None)

返回类型:

Any

tvm.tir.ret(val, span=None)[源代码]#

Create a tir return expression

Parameters#

valExpr

The returned tir expression, whose data type is int, float or void pointer.

spanOptional[Span]

The location of this operator in the source code.

Returns#

retPrimExpr

The return expression

tvm.tir.round(x, span=None)[源代码]#

Round elements of the array to the nearest integer.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.rsqrt(x)[源代码]#

Take reciprocal of square root of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.shift_left(x, y, span=None)[源代码]#

Return the result of x left shifted by y bits.

Parameters#

xPrimExpr

Input argument.

yPrimExpr

Input argument.

Returns#

zPrimExpr

The result.

tvm.tir.shift_right(x, y, span=None)[源代码]#

Return the result of x right shifted by y bits.

Parameters#

xPrimExpr

Input argument.

yPrimExpr

Input argument.

Returns#

zPrimExpr

The result.

tvm.tir.sigmoid(x)[源代码]#

Quick function to get sigmoid

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.simdgroup_load(d, index, ptr, stride, col=8, row=8, transpose_matrix=False)[源代码]#

Load data from device memory or threadgroup memory to simdgroup

Parameters#

dvar

The simdgroup var

indexPrimExpr

The index of the matrix.

ptrPrimExpr

The pointer.

stridePrimExpr

The stride.

colint

The number of columns.

rowint

The number of rows.

transpose_matrixbool

Whether to transpose the matrix.

Returns#

callPrimExpr

The call expression.

参数:
  • d (Var)

  • index (PrimExpr)

  • ptr (PrimExpr)

  • stride (PrimExpr)

  • col (int)

  • row (int)

  • transpose_matrix (bool)

tvm.tir.simdgroup_multiply_accumulate(d, index_d, a, index_a, b, index_b, c, index_c)[源代码]#

Multiply and accumulate two matrices in simdgroup i.e. d = a * b + c

Parameters#

dVar

The destination matrix.

index_dPrimExpr

The index of the destination matrix.

aVar

The first matrix.

index_aPrimExpr

The index of the first matrix.

bVar

The second matrix.

index_bPrimExpr

The index of the second matrix.

cVar

The third matrix.

index_cPrimExpr

The index of the third matrix.

Returns#

callPrimExpr

The call expression.

参数:
  • d (Var)

  • index_d (PrimExpr)

  • a (Var)

  • index_a (PrimExpr)

  • b (Var)

  • index_b (PrimExpr)

  • c (Var)

  • index_c (PrimExpr)

tvm.tir.simdgroup_store(d, index, ptr, stride, col=8, row=8, transpose_matrix=False)[源代码]#

Store data from simdgroup to device memory or threadgroup memory

Parameters#

dPrimExpr

The SIMDGroup.

indexPrimExpr

The index of the matrix.

ptrPrimExpr

The pointer.

stridePrimExpr

The stride.

colint

The number of columns.

rowint

The number of rows.

transpose_matrixbool

Whether to transpose the matrix.

Returns#

callPrimExpr

The call expression.

参数:
  • d (PrimExpr)

  • index (PrimExpr)

  • ptr (PrimExpr)

  • stride (PrimExpr)

  • col (int)

  • row (int)

  • transpose_matrix (bool)

tvm.tir.sin(x)[源代码]#

Take sin of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.sinh(x)[源代码]#

Take sinh of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.sqrt(x)[源代码]#

Take square root of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.start_profile_intrinsic(id)[源代码]#

Start profile intrinsic. Parameters ---------- id : int

The intrinsic id.

Returns#

callPrimExpr

The call expression.

tvm.tir.stmt_list(stmt)[源代码]#

Make list of stmt from blocks.

Parameters#

stmtStmt

The input statement.

Returns#

stmt_listList[Stmt]

The unpacked list of statements

参数:

stmt (Stmt)

返回类型:

List[Stmt]

tvm.tir.stmt_seq(*args)[源代码]#

Make sequence of statements

Parameters#

*argsUnion[PrimExpr, Stmt]

List of statements to be combined as sequence.

Returns#

stmtStmt

The combined statement.

参数:

args (PrimExpr | Stmt)

返回类型:

SeqStmt

tvm.tir.subtract(lhs, rhs, span=None)[源代码]#

Generic subtract operator.

Parameters#

lhsobject

The left operand.

rhsobject

The right operand.

spanOptional[Span]

The location of this operator in the source.

Returns#

optvm.Expr

The result Expr of subtract operaton.

tvm.tir.sum(expr, axis, where=None, init=None, *args)#

Create a sum expression over axis.

Parameters#

exprPrimExpr

The source expression.

axisIterVar

The reduction IterVar axis

whereoptional, Expr

Filtering predicate of the reduction.

Returns#

valuePrimExpr

The result value.

Example#

m = te.var("m")
n = te.var("n")
A = te.placeholder((m, n), name="A")
k = te.reduce_axis((0, n), name="k")

# there are two way to use this sum reducer:
# mode 1, accept (expr, axis, where) to produce an Reduce Expr
# tvm.sum represents tvm.te.sum or tvm.tir.sum.
B = te.compute((m,), lambda i: tvm.sum(A[i, k], axis=k), name="B")

# mode 2, simply use it with multiple Exprs:
sum_res = tvm.sum(m, n)
tvm.tir.tan(x)[源代码]#

Take tan of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.tanh(x)[源代码]#

Take hyperbolic tanh of input x.

Parameters#

xPrimExpr

Input argument.

Returns#

yPrimExpr

The result.

tvm.tir.trace(args, trace_action='tvm.default_trace_action')[源代码]#

Trace tensor data at the runtime.

The trace function allows to trace specific tensor at the runtime. The tracing value should come as last argument. The trace action should be specified, by default tvm.default_trace_action is used.

Parameters#

argslist of Expr or Buffers.

Positional arguments.

trace_actionstr.

The name of the trace action.

Returns#

callPrimExpr

The call expression.

See Also#

tvm.tir.call_packed : Creates packed function.

tvm.tir.trunc(x, span=None)[源代码]#

Get truncated value of the input.

The truncated value of the scalar x is the nearest integer i which is closer to zero than x is.

Parameters#

xPrimExpr

Input argument.

spanOptional[Span]

The location of this operator in the source code.

Returns#

yPrimExpr

The result.

tvm.tir.truncdiv(a, b, span=None)[源代码]#

Compute the truncdiv of two expressions.

Parameters#

aPrimExpr

The left hand operand

bPrimExpr

The right hand operand

spanOptional[Span]

The location of this operator in the source.

Returns#

resPrimExpr

The result expression.

Note#

This is the default integer division behavior in C.

tvm.tir.truncmod(a, b, span=None)[源代码]#

Compute the truncmod of two expressions.

Parameters#

aPrimExpr

The left hand operand

bPrimExpr

The right hand operand

spanOptional[Span]

The location of this operator in the source.

Returns#

resPrimExpr

The result expression.

Note#

This is the default integer division behavior in C.

tvm.tir.tvm_access_ptr(ptype, data, offset, extent, rw_mask)[源代码]#

Get head access address with memory access pattern info

Parameters#

ptypeExpr

The data type of pointer.

dataDType*

The data of pointer.

offsetint

The offset of pointer.

extentint

The extent of pointer.

rw_maskint

The read write mask.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_bmma_sync(fragment_d, index_d, fragment_a, index_a, fragment_b, index_b, fragment_c, index_c)[源代码]#

TVM intrinsic for tensor core bmma_sync operators

Parameters#

fragment_dVar

The bwmma fragment_d.

index_dExpr

The fragment_d index.

fragment_aVar

The bwmma fragment_a.

index_aExpr

The fragment_a index.

fragment_bVar

The bwmma fragment_b.

index_bExpr

The fragment_b index.

fragment_cVar

The bwmma fragment_c.

index_cExpr

The fragment_c index.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_check_return(expected, return_unexpected, nested_call)[源代码]#

Return new on stack dtype[num] Parameters ---------- expected : int

The expected return code.

return_unexpectedint

The unexpected return code.

nested_callPrimExpr

The call expression to check return.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_fill_fragment(fragment, m, n, k, index, value)[源代码]#

TVM intrinsic for tensor core fill_fragment operators

Parameters#

fragmentVar

The wmma fragment

mUIntImm

The shape of wmma fragment.

nUIntImm

The shape of wmma fragment.

kUIntImm

The shape of wmma fragment.

indexExpr

The fragment index.

valueExpr

The value to be filled in fragment.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_load_matrix_sync(fragment, m, n, k, index, buffer_ptr, stride, layout)[源代码]#

TVM intrinsic for tensor core load operators

Parameters#

fragmentVar

The wmma fragment.

mUIntImm

The shape of wmma fragment.

nUIntImm

The shape of wmma fragment.

kUIntImm

The shape of wmma fragment.

indexExpr

The fragment index.

buffer_ptrExpr

The fragment buffer pointer.

strideExpr

The fragment stride.

layoutLiteral["row_major", "column_major"]

The fragment layout.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_mma_sync(fragment_d, index_d, fragment_a, index_a, fragment_b, index_b, fragment_c, index_c)[源代码]#

TVM intrinsic for tensor core mma_sync operators

Parameters#

fragment_dVar

The wmma fragment_d.

index_dExpr

The fragment_d index.

fragment_aVar

The wmma fragment_a.

index_aExpr

The fragment_a index.

fragment_bVar

The wmma fragment_b.

index_bExpr

The fragment_b index.

fragment_cVar

The wmma fragment_c.

index_cExpr

The fragment_c index.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_stack_alloca(dtype_str, num)[源代码]#

Return new on stack dtype[num]

Parameters#

dtype_strstr

The data type of array.

numint

The size of array.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_stack_make_array(data, shape, strides, ndim, arr_dtype, elem_offset)[源代码]#

Allocate a NDArray(DLTensor) on stack, return the handle

Parameters#

dataExpr

The data of array.

shapeExpr

The shape of array.

stridesExpr

The strides of array.

ndimExpr

The dimensions of array.

arr_dtypeExpr

The data type of array.

elem_offseExpr

The element offset of array.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_stack_make_shape(*args)[源代码]#

Allocate a shape tuple on stack, return the handle

Parameters#

argsint

The tuple shape.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_store_matrix_sync(fragment, m, n, k, index, buffer_ptr, stride, layout)[源代码]#

TVM intrinsic for tensor core store operators

Parameters#

fragmentVar

The wmma fragment.

mUIntImm

The shape of wmma fragment.

nUIntImm

The shape of wmma fragment.

kUIntImm

The shape of wmma fragment.

indexExpr

The fragment index.

buffer_ptrExpr

The fragment buffer pointer.

strideExpr

The fragment stride.

layoutLiteral["row_major", "column_major"]

The fragment layout.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_struct_get(arr, index, field, dtype)[源代码]#

Get struct field value in array

Parameters#

dtypestr

The date type of the result.

arrStructType*

The array of struct.

indexint

The index of struct.

fieldint

The field of struct.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_struct_set(arr, index, field, value)[源代码]#

Set value in struct field in array

Parameters#

arrStructType*

The array of struct.

indexint

The index of struct.

fieldint

The field of struct.

valueExpr

The value to be set in field.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_thread_allreduce(*freduce_args)[源代码]#

Perform allreduce inside threadblock.

Parameters#

freduce_argsExpr

The args.

Returns#

callPrimExpr

The call expression.

tvm.tir.tvm_throw_last_error()[源代码]#

Throw TVMGetLastError()

Returns#

retPrimExpr

The return expression

tvm.tir.tvm_tuple(*value)[源代码]#

Create a tuple structure in value field of AttrStmt

Parameters#

valueExpr

The value in tuple.

Returns#

callPrimExpr

The call expression.

tvm.tir.type_annotation(dtype)[源代码]#

Create a type annotation expression

Parameters#

dtypeExpr

The data type.

Returns#

callPrimExpr

The call expression.

tvm.tir.undef()[源代码]#

Returns an initialized but arbitrary value

Returns#

callPrimExpr

The call expression.

tvm.tir.vectorcombine(dtype, vec1, vec2)[源代码]#

Concat two vectors

Parameters#

vec1list

The input vector.

vec2list

The input vector.

Returns#

callPrimExpr

The call expression.

tvm.tir.vectorhigh(dtype, vec)[源代码]#

Get the high level half of the vector

Parameters#

dtypestr

The data type of the result.

veclist

The input vector.

Returns#

callPrimExpr

The call expression.

tvm.tir.vectorlow(dtype, vec)[源代码]#

Get the low level half of the vector

Parameters#

dtypestr

The data type of the result.

veclist

The input vector.

Returns#

callPrimExpr

The call expression.

tvm.tir.vscale()[源代码]#

Get the target's vscale value. It will be lowered to llvm.vscale intrinsic (https://llvm.org/docs/LangRef.html#llvm-vscale-intrinsic) Returns ------- call : PrimExpr

Call to the vscale intrinsic