tvm.tir#
Namespace for Tensor-level IR
- class tvm.tir.Allocate(buffer_var: Var, dtype: str, extents: List[PrimExpr], condition: PrimExpr, body: Stmt, annotations: Mapping[str, Object] | None = None, span: Span | None = None)[源代码]#
Allocate node.
- 参数:
buffer_var (Var) -- The buffer variable.
dtype (str) -- The data type of the buffer.
extents (list of Expr) -- The extents of the allocate
condition (PrimExpr) -- The condition.
body (Stmt) -- The body statement.
annotations (Optional[Mapping[str, Object]]) -- Additional annotation hints
span (Optional[Span]) -- The location of the stmt in the source code.
- class tvm.tir.AllocateConst(buffer_var: Var, dtype: str, extents: List[PrimExpr], data_or_idx: NDArray | int, body: Stmt, annotations: Mapping[str, Object] | None = None, span: Span | None = None)[源代码]#
Allocate constant node.
- 参数:
buffer_var (Var) -- The buffer variable.
dtype (str) -- The data type of the buffer.
extents (list of Expr) -- The extents of the allocate
data_or_idx (Union[NDArray, int]) -- If an NDArray, this is the const data associated with the constant. If an integer, this is the index into the "constants" attribute of the IRModule that contains the AllocateConst.
body (Stmt) -- The body statement.
annotations (Optional[Mapping[str, Object]]) -- Additional annotations about the allocation.
span (Optional[Span]) -- The location of the stmt in the source code.
- class tvm.tir.Any(span: Span | None = None)[源代码]#
Any node.
- spanOptional[Span]
The location of this expression in the source code.
- class tvm.tir.AssertStmt(condition: PrimExpr, message: PrimExpr, body: Stmt, span: Span | None = None)[源代码]#
AssertStmt node.
- 参数:
condition (PrimExpr) -- The assert condition.
message (PrimExpr) -- The error message.
body (tvm.tir.Stmt) -- The body statement.
span (Optional[Span]) -- The location of the stmt in the source code.
- class tvm.tir.AttrStmt(node: Object, attr_key: str, value: PrimExpr, body: Stmt, span: Span | None = None)[源代码]#
AttrStmt node.
- class tvm.tir.BijectiveLayout[源代码]#
Bijective mapping for two layouts (src-layout and dst-layout). It provides shape and index conversion between each other.
Do not construct directly, use
bijective_layout
instead. See the documentation ofbijective_layout
for more details.参见
bijective_layout
Declare a layout
- class tvm.tir.Block(iter_vars: List[IterVar], reads: List[BufferRegion], writes: List[BufferRegion], name_hint: str, body: Stmt, init: Stmt | None = None, alloc_buffers: List[Buffer] | None = None, match_buffers: List[MatchBufferRegion] | None = None, annotations: Mapping[str, Object] | None = None, span: Span | None = None)[源代码]#
Block node.
- 参数:
iter_vars (List[IterVar]) -- The block Variable.
reads (List[BufferRegion]) -- The read buffer regions of the block.
writes (List[BufferRegion]) -- The write buffer regions of the block.
name_hint (str) -- the name_hint of the block.
body (Stmt) -- The body of the block.
init (Optional[Stmt]) -- The init block of the reduction block
alloc_buffers (Optional[list[Buffer]]) -- The buffer allocations
match_buffers (Optional[List[MatchBufferRegion]]) -- The subregion buffer match
annotations (Optional[Mapping[str, Object]]) -- Additional annotation hints.
span (Optional[Span]) -- The location of this block in the source code.
- class tvm.tir.BlockDependenceInfo(mod: IRModule | PrimFunc)[源代码]#
An object that helps build and query block level dependences using the 2 core objects BlockScope and StmtSRef
The data structures exposed are: 1) sref2scope: Mapping from the srefs to its corresponding BlockScope 2) stmt2ref: Mapping from blocks to corresponding StmtSRefs
Note that this object does not store SRefs to loops as the purpose is only to expose block level dependences. This provides the advantage that the scope block (parent block) for a given block sref can be directly accessed as sref->parent
- get_block_scope(block_sref: StmtSRef) BlockScope [源代码]#
Get the BlockScope correpsonding to the block sref
- class tvm.tir.BlockRealize(iter_values: List[PrimExpr], predicate: PrimExpr | bool, block: Block, span: Span | None = None)[源代码]#
BlockRealize node.
- class tvm.tir.Broadcast(value: PrimExpr, lanes: PrimExpr, span: Span | None = None)[源代码]#
Broadcast node.
- class tvm.tir.Buffer[源代码]#
Symbolic data buffer in TVM.
Buffer provide a way to represent data layout specialization of data structure in TVM.
Do not construct directly, use
decl_buffer()
instead. See the documentation ofdecl_buffer()
for more details.参见
decl_buffer
Declare a buffer
- access_ptr(access_mask, ptr_type='handle', content_lanes=1, offset=0, extent=None)[源代码]#
Get an access pointer to the head of buffer.
This is the recommended method to get buffer data ptress when interacting with external functions.
- 参数:
access_mask (int) -- The access pattern MASK. Indicate whether the access will read or write to the data content.
ptr_type (str, optional) -- The data type of the result pointer. Do not specify unless we want to cast pointer to specific type.
content_lanes (int, optional) -- The number of lanes for the data type. This value is greater than one for vector types.
offset (Expr, optional) -- The offset of pointer. We can use it to offset by the number of elements from the address of ptr.
extent (Expr, optional) -- The extent of pointer.
示例
# Get access ptr for read buffer.access_ptr("r") # Get access ptr for read/write with bitmask buffer.access_ptr(Buffer.READ | Buffer.WRITE) # Get access ptr for read/write with str flag buffer.access_ptr("rw") # Get access ptr for read with offset buffer.access_ptr("r", offset = 100) # Get access ptr for read with extent buffer.access_ptr("r", extent = 100)
- get_flattened_buffer()[源代码]#
Generate a Buffer that is a flattened version of this buffer.
- 返回:
flattened -- The corresponding flat buffer.
- 返回类型:
- scope()[源代码]#
Return the storage scope associated with this buffer. :returns: scope -- The storage scope associated with this buffer. :rtype: str
- vload(begin, dtype=None, predicate=None)[源代码]#
Generate an Expr that loads dtype from begin index.
- 参数:
begin (Array of Expr) -- The beginning index in unit of Buffer.dtype
dtype (str) -- The data type to be loaded, can be vector type which have lanes that is multiple of Buffer.dtype
predicate (Optional[PrimExpr]) -- A vector mask of boolean values indicating which lanes of a vector are to be loaded. The number lanes of the mask must be equal to the number of lanes being loaded.
- 返回:
load -- The corresponding load expression.
- 返回类型:
Expr
- vstore(begin, value, predicate=None)[源代码]#
Generate a Stmt that store value into begin index.
- 参数:
begin (Array of Expr) -- The beginning index in unit of Buffer.dtype
value (Expr) -- The value to be stored.
predicate (Optional[PrimExpr]) -- A vector mask of boolean values indicating which lanes of a vector are to be stored. The number lanes of the mask must be equal to the number of lanes in value.
- 返回:
store -- The corresponding store stmt.
- 返回类型:
- class tvm.tir.BufferLoad(buffer: Buffer, indices: List[PrimExpr], predicate: PrimExpr | None = None, span: Span | None = None)[源代码]#
Buffer load node.
- 参数:
buffer (Buffer) -- The buffer to be loaded.
indices (List[PrimExpr]) -- The buffer indices to load values from.
span (Optional[Span]) -- The location of this expression in the source code.
predicate (Optional[PrimExpr]) -- A vector mask of boolean values indicating which lanes of a vector are to be loaded. The number lanes of the mask must be equal to the number of lanes being loaded.
- class tvm.tir.BufferRealize(buffer: Buffer, bounds: List[Range], condition: PrimExpr, body: Stmt, span: Span | None = None)[源代码]#
Buffer realize node.
- class tvm.tir.BufferStore(buffer: Buffer, value: PrimExpr, indices: List[PrimExpr], predicate: PrimExpr | None = None, span: Span | None = None)[源代码]#
Buffer store node.
- 参数:
buffer (Buffer) -- The buffer.
value (PrimExpr) -- The value we to be stored.
indices (List[PrimExpr]) -- The indices location to be stored.
predicate (Optional[PrimExpr]) -- A vector mask of boolean values indicating which lanes of a vector are to be stored. The number lanes of the mask must be equal to the number of lanes in value.
span (Optional[Span]) -- The location of the stmt in the source code.
- class tvm.tir.Call(dtype: str, op: Op | str, args: List[PrimExpr], span: Span | None = None)[源代码]#
Call node.
- class tvm.tir.CommReducer(lhs: List[Var], rhs: List[Var], result: List[PrimExpr], identity_element: List[PrimExpr], span: Span | None = None)[源代码]#
Commutative reduce operator
- class tvm.tir.DeclBuffer(buffer: Buffer, body: Stmt, span: Span | None = None)[源代码]#
DeclBuffer node.
- class tvm.tir.For(loop_var: Var, min: PrimExpr, extent: PrimExpr, kind: ForKind, body: Stmt, thread_binding: IterVar | None = None, annotations: Mapping[str, Object] | None = None, span: Span | None = None)[源代码]#
For node.
- 参数:
loop_var (Var) -- The loop variable.
min (PrimExpr) -- The beginning value.
extent (PrimExpr) -- The length of the loop.
kind (ForKind) -- The type of the for.
body (Stmt) -- The body statement.
thread_binding (Optional[tir.IterVar]) -- The thread this loop binds to. Only valid if kind is ThreadBinding
annotations (Optional[Mapping[str, Object]]) -- Additional annotation hints.
span (Optional[Span]) -- The location of the stmt in the source code.
- class tvm.tir.ForKind(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[源代码]#
The kind of the for loop.
备注
ForKind can change the control flow semantics of the loop and need to be considered in all TIR passes.
- class tvm.tir.IfThenElse(condition: PrimExpr, then_case: Stmt, else_case: Stmt | None, span: Span | None = None)[源代码]#
IfThenElse node.
- class tvm.tir.IndexMap(initial_indices, final_indices, inverse_index_map)[源代码]#
A mapping from multi-dimensional indices to another set of multi-dimensional indices
- 参数:
initial_indices (List[Var]) -- Variables representing the indices prior to remapping.
final_indices (List[PrimExpr]) -- Expressions defining the indices after remapping.
inverse_index_map (Union[Callable, Optional[IndexMap]]) -- The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user's responsibility to ensure the correctness of the pre-defined inverse index map.
- static from_func(mapping_function: Callable, ndim: int | None = None, inverse_index_map: Callable | IndexMap | None = None, *, index_dtype: str = 'int64')[源代码]#
Create an index map from a function
- 参数:
mapping_function (Callable) -- The function to map from source indices to target indices. The function should accept tir.Var parameters and return a either a tir.PrimExpr, or a list of tir.PrimExpr. Returning a tir.PrimExpr is equivalent to returning a list of length 1 containing that tir.PrimExpr.
ndim (Optional[int]) -- The dimensionality of the buffer to which this transformation should be applied. If mapping_function uses variadic argument *args, ndim must be specified. If mapping_function does not use variadic arguments, ndim is optional.
inverse_index_map (Union[Callable, Optional[IndexMap]]) -- The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user's responsibility to ensure the correctness of the pre-defined inverse index map.
- 返回:
index_map -- Returns an IndexMap representing the mapping_function.
- 返回类型:
- static from_func_with_separators(mapping_function: Callable, ndim: int | None = None, inverse_index_map: Callable | IndexMap | None = None, *, index_dtype: str = 'int64')[源代码]#
Create an index map from a function
- 参数:
mapping_function (Callable) -- The function to map from source indices to target indices. The function should accept tir.Var parameters and return either a tir.PrimExpr or a list. Each element of the returned list should be either a tir.PrimExpr or the object IndexMap.AXIS_SEPARATOR. Returning a tir.PrimExpr is equivalent to returning a list of length 1 containing that tir.PrimExpr.
ndim (Optional[int]) -- The dimensionality of the buffer to which this transformation should be applied. If mapping_function uses variadic argument *args, ndim must be specified. If mapping_function does not use variadic arguments, ndim is optional.
inverse_index_map (Union[Callable, Optional[IndexMap]]) -- The optional pre-defined inverse index map. When this is defined, IndexMap::Inverse will return the pre-defined inverse index map. Otherwise, the inverse index map will be computed on the fly. It is the user's responsibility to ensure the correctness of the pre-defined inverse index map.
index_dtype (str) -- The default index dtype to use for input iters in the mapping function.
- 返回:
ret -- Returns a tuple whose first element is an IndexMap representing the mapping_function, and whose second index is a list of indices at which IndexMap.AXIS_SEPARATOR occurred.
- 返回类型:
- inverse(shape: List[Range | PrimExpr]) IndexMap [源代码]#
Return the inverse of the map
Throws an error if the function is not bijective.
- map_ndarray(arr_src: NDArray) NDArray [源代码]#
Apply thie index map to transform the layout of the input NDArray
- 参数:
arr_src (runtime.NDArray) -- The NDArray to be transformed
- 返回:
arr_dst -- The transformed NDArray
- 返回类型:
runtime.NDArray
- non_surjective_inverse(shape: List[Range | PrimExpr]) Tuple[IndexMap, PrimExpr] [源代码]#
Return the inverse of the map
Can be applied to transformations that introduce padding.
- 参数:
shape (List[Union[Range,PrimExpr]]) -- The region over which the inverse should be determined. Used for determining the predicate.
- 返回:
result -- The inverse, and a predicate for which the inverse maps to a valid index in the input range.
- 返回类型:
示例
index_map = IndexMap.from_func(lambda i: [i//4, i%4]) inverse_map, predicate = index_map.non_surjective_inverse([14]) assert inverse_map.is_equivalent_to(IndexMap.from_func(lambda j,k: [4*j + k]) print(predicate) # Prints "(axis0==3) && (axis2 >= 2)"
- class tvm.tir.IterVar(dom: Range, var: Var | str, iter_type: int, thread_tag: str = '', span: Span | None = None)[源代码]#
Represent iteration variable.
IterVar represents axis iterations in the computation.
- 参数:
参见
te.thread_axis
Create thread axis IterVar.
te.reduce_axis
Create reduce axis IterVar.
- class tvm.tir.Layout[源代码]#
Layout is composed of upper cases, lower cases and numbers, where upper case indicates a primal axis and the corresponding lower case with factor size indicates the subordinate axis. For example, NCHW16c can describe a 5-D tensor of [batch_size, channel, height, width, channel_block]. Here subordinate axis channel_block=16 is the factor size of the primal axis C (channel).
参见
layout
Declare a layout
- class tvm.tir.Let(var: Var, value: PrimExpr, body: PrimExpr, span: Span | None = None)[源代码]#
Let node.
- class tvm.tir.LetStmt(var: Var, value: PrimExpr, body: Stmt, span: Span | None = None)[源代码]#
LetStmt node.
- class tvm.tir.MatchBufferRegion(buffer: Buffer, source: BufferRegion)[源代码]#
MatchBufferRegion node.
- 参数:
buffer (Buffer) -- The target buffer
source (BufferRegion) -- The region of source buffer
- class tvm.tir.Prefetch(buffer: Buffer, bounds: List[Range], span: Span | None = None)[源代码]#
Prefetch node.
- class tvm.tir.PrimFunc(params, body, ret_type=None, buffer_map=None, attrs=None, span=None)[源代码]#
A function declaration expression.
- 参数:
params (List[Union[tvm.tir.Var, tvm.tir.Buffer]]) -- List of input parameters to the function.
body (tvm.tir.Stmt) -- The body of the function.
ret_type (tvm.ir.Type) -- The return type annotation of the function.
buffer_map (Map[tvm.tir.Var, tvm.tir.Buffer]) -- The buffer binding map.
attrs (Optional[tvm.Attrs]) -- Attributes of the function, can be None
span (Optional[Span]) -- The location of this itervar in the source code.
- specialize(param_map: Mapping[Var, PrimExpr | Buffer])[源代码]#
Specialize parameters of PrimFunc
- 参数:
param_map (Mapping[Var, Union[PrimExpr, Buffer]]) -- The mapping from function params to the instance
示例
We can define a Meta TIR function with symbolic shape:
@T.prim_func def mem_copy(a: T.handle, b: T.handle, m: T.int32, n: T.int32) -> None: A = T.match_buffer(a, (m, n), "float32") B = T.match_buffer(b, (m, n), "float32") for i, j in T.grid(m, n): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj]
Then we can make it specialized with given shapes or buffers.
a, _, m, n = mem_copy.params func = mem_copy.specialize({a: tir.decl_buffer((16, 16))}) # or func = mem_copy.specialize({n: 16, m: 16})
The specialized function:
@T.prim_func def mem_copy_16_16(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (16, 16), "float32") B = T.match_buffer(b, (16, 16), "float32") for i, j in T.grid(16, 16): with T.block(): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj]
- 返回:
func -- The new function with parameter specialized
- 返回类型:
- class tvm.tir.ProducerLoad(producer: DataProducer, indices: List[PrimExpr], span: Span | None = None)[源代码]#
Producer load node.
- 参数:
producer (DataProducer) -- The buffer to be loaded.
indices (List[PrimExpr]) -- The buffer indices.
span (Optional[Span]) -- The location of this expression in the source code.
- class tvm.tir.ProducerRealize(producer: DataProducer, bounds: List[Range], condition: PrimExpr, body: Stmt, storage_scope: str = '', span: Span | None = None)[源代码]#
ProducerRealize node.
- 参数:
producer (DataProducer) -- The data producer.
bounds (List[Range]) -- The bound of realize
condition (PrimExpr) -- The realize condition.
body (Stmt) -- The realize body
storage_scope (str) -- The storage scope associated with this realization
span (Optional[Span]) -- The location of the stmt in the source code.
- class tvm.tir.ProducerStore(producer: DataProducer, value: PrimExpr, indices: List[PrimExpr], span: Span | None = None)[源代码]#
ProducerStore node.
- 参数:
producer (DataProducer) -- The data producer.
value (PrimExpr) -- The value to be stored.
indices (list of Expr) -- The index arguments of the store.
span (Optional[Span]) -- The location of the stmt in the source code.
- class tvm.tir.Ramp(base: PrimExpr, stride: PrimExpr, lanes: PrimExpr, span: Span | None = None)[源代码]#
Ramp node.
- class tvm.tir.Reduce(combiner: CommReducer, src: List[PrimExpr], rdom: List[IterVar], condition: PrimExpr, value_index: int, init: List[PrimExpr] | None = None, span: Span | None = None)[源代码]#
Reduce node.
- 参数:
combiner (CommReducer) -- The combiner.
src (list of Expr) -- The source expression.
condition (PrimExpr) -- The reduce condition.
value_index (int) -- The value index.
init (list of Expr) -- The initial value for output. This can be an int, float or ProducerLoad
span (Optional[Span]) -- The location of this expression in the source code.
- class tvm.tir.Select(condition: PrimExpr, true_value: PrimExpr, false_value: PrimExpr, span: Span | None = None)[源代码]#
Select node.
备注
Select may compute both true_value and false_value. Use
tvm.tir.if_then_else
instead if you want to get a conditional expression that only evaluates the correct branch.
- class tvm.tir.Shuffle(vectors: List[PrimExpr], indices: List[PrimExpr], span: Span | None = None)[源代码]#
Shuffle node.
- class tvm.tir.SizeVar(name: str, dtype: str | Type, span: Span | None = None)[源代码]#
- Symbolic variable to represent a tensor index size
which is greater or equal to zero.
- tvm.tir.TVMBackendAllocWorkspace(device_type, device_id, nbytes, dtype_code_hint, dtype_bits_hint)[源代码]#
Backend function to allocate temporal workspace
- 参数:
device_type (int) -- The device type which the space will be allocated.
device_id (int) -- The device id which the space will be allocated.
nbytes (int) -- The size of the space requested.
dtype_code_hint (int) -- The type code of the array elements. Only used in certain backends such as OpenGL.
dtype_bits_hint (int) -- The type bits of the array elements. Only used in certain backends such as OpenGL.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.TVMBackendFreeWorkspace(device_type, device_id, ptr)[源代码]#
Backend function to free temporal workspace.
- class tvm.tir.TensorIntrin(desc, impl)[源代码]#
A tensor intrinsic.
- 参数:
- static get(name: str, allow_missing: bool = False) TensorIntrin | None [源代码]#
Look up a tensor intrinsic by its name.
- 参数:
- 返回:
result -- The TensorIntrin with the specified name, or None if not found.
- 返回类型:
Optional[TensorIntrin]
- tvm.tir.address_of(buffer_load, span=None)[源代码]#
Returns the address of an element in the buffer
- 参数:
buffer_load (BufferLoad) -- The buffer load.
span (Optional[Span]) -- The location of this operator in the source code.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.all(*args, span=None)[源代码]#
- Create a new expression of the intersection of all conditions in the
arguments
- tvm.tir.any(*args, span=None)[源代码]#
Create a new experssion of the union of all conditions in the arguments
- tvm.tir.assume(cond=None)[源代码]#
Provide a true statement that can be used for simplifications
- 参数:
cond (Expr) -- The constraint condition.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.bijective_layout(src_layout: str | Layout, dst_layout: str | Layout) BijectiveLayout [源代码]#
Create a bijective layout mapping.
- 参数:
- 返回:
bijective_layout -- The created bijective layout
- 返回类型:
- tvm.tir.call_cpacked(*args, span=None)[源代码]#
Build expression by call an external packed function.
Same as call_packed, except that the first argument is the function name (as in call_extern), and the last argument is the resource handle.
- 参数:
- 返回:
call -- The call expression.
- 返回类型:
参见
te.extern
Create tensor with extern function call.
- tvm.tir.call_cpacked_lowered(*args, span=None)[源代码]#
Lowered version of call c-packed. Same as call_packed, except that the first argument is the function name (as in call_extern), and the last argument is the resource handle.
- 参数:
- 返回:
call -- The call expression.
- 返回类型:
参见
te.extern
Create tensor with extern function call.
- tvm.tir.call_extern(dtype, func_name, *args, span=None)[源代码]#
Build expression by calling a extern function.
- tvm.tir.call_intrin(dtype, func_name, *args, span=None)[源代码]#
Build expression by calling an intrinsic function.
Intrinsics can be overloaded with multiple data types via the intrinsic translation rule.
- tvm.tir.call_llvm_intrin(dtype, name, *args, span=None)[源代码]#
Build expression by calling a llvm intrinsic function
- tvm.tir.call_llvm_pure_intrin(dtype, name, *args, span=None)[源代码]#
Build expression by calling a pure llvm intrinsic function
- tvm.tir.call_packed(*args, span=None)[源代码]#
Build expression by call an external packed function.
The argument to packed function can be Expr or Buffer. The argument is the corresponding POD type when Expr is presented.
When the argument is Buffer, the corresponding PackedFunc will receive an TVMArrayHandle whose content is valid during the callback period. If the PackedFunc is a python callback, then the corresponding argument is NDArray.
- 参数:
- 返回:
call -- The call expression.
- 返回类型:
参见
te.extern
Create tensor with extern function call.
- tvm.tir.call_packed_lowered(*args, span=None)[源代码]#
Lowered version of call packed. The argument to packed function can be Expr or Buffer. The argument is the corresponding POD type when Expr is presented. When the argument is Buffer, the corresponding PackedFunc will recieve an TVMArrayHandle whose content is valid during the callback period. If the PackedFunc is a python callback, then the corresponding argument is NDArray.
- 参数:
- 返回:
call -- The call expression.
- 返回类型:
参见
te.extern
Create tensor with extern function call.
- tvm.tir.call_pure_extern(dtype, func_name, *args, span=None)[源代码]#
Build expression by calling a pure extern function.
- tvm.tir.call_tir(global_var: GlobalVar, *args)[源代码]#
Performs a call into another PrimFunc in the same IRModule
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.comm_reducer(fcombine, fidentity, name='reduce')[源代码]#
Create a commutative reducer for reduction.
- 参数:
fcombine (function(Expr -> Expr -> Expr)) -- A binary function which takes two Expr as input to return a Expr.
fidentity (function(str -> Expr)) -- A function which takes a type string as input to return a const Expr.
- 返回:
reducer -- A function which creates a reduce expression over axis. There are two ways to use it:
accept (expr, axis, where) to produce an Reduce Expr on specified axis;
simply use it with multiple Exprs.
- 返回类型:
function
示例
n = te.var("n") m = te.var("m") mysum = te.comm_reducer(lambda x, y: x+y, lambda t: tvm.tir.const(0, dtype=t), name="mysum") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), name="k") B = te.compute((n,), lambda i: mysum(A[i, k], axis=k), name="B")
- tvm.tir.decl_buffer(shape, dtype=None, name='buffer', data=None, strides=None, elem_offset=None, scope='', data_alignment=-1, offset_factor=0, buffer_type='', axis_separators=None, span=None)[源代码]#
Declare a new symbolic buffer.
Normally buffer is created automatically during lower and build. This is only needed if user want to specify their own buffer layout.
See the note below for detailed discussion on usage of buffer.
- 参数:
shape (tuple of Expr) -- The shape of the buffer.
dtype (str, optional) -- The data type of the buffer.
name (str, optional) -- The name of the buffer.
data (tir.Var, optional) -- The data pointer in the buffer.
strides (array of Expr) -- The stride of the buffer.
elem_offset (Expr, optional) -- The beginning offset of the array to data. In terms of number of elements of dtype.
scope (str, optional) -- The storage scope of the buffer, if not global. If scope equals empty string, it means it is global memory.
data_alignment (int, optional) -- The alignment of data pointer in bytes. If -1 is passed, the alignment will be set to TVM's internal default.
offset_factor (int, optional) -- The factor of elem_offset field, when set, elem_offset is required to be multiple of offset_factor. If 0 is pssed, the alignment will be set to 1. if non-zero is passed, we will created a Var for elem_offset if elem_offset is not None.
buffer_type (str, optional, {"", "auto_broadcast"}) -- auto_broadcast buffer allows one to implement broadcast computation without considering whether dimension size equals to one. TVM maps buffer[i][j][k] -> buffer[i][0][k] if dimension j's shape equals 1.
axis_separators (list of int, optional) -- If passed, a list of separators between groups of axes, each of which is flattened to an output axis. For flat memory spaces, should either be None, or an empty list.
span (Optional[Span]) -- The location of the decl_buffer creation in the source.
- 返回:
buffer -- The created buffer
- 返回类型:
示例
Here's an example of how broadcast buffer can be used to define a symbolic broadcast operation,
m0, m1, m2 = te.var("m0"), te.var("m1"), te.var("m2") n0, n1, n2 = te.var("n0"), te.var("n1"), te.var("n2") o0, o1, o2 = te.var("o0"), te.var("o1"), te.var("o2") A = te.placeholder((m0, m1, m2), name='A') B = te.placeholder((n0, n1, n2), name='B') C = te.compute((o0, o1, o2), lambda i, j, k: A[i, j, k] + B[i, j, k], name='C') Ab = tvm.tir.decl_buffer(A.shape, A.dtype, name="Ab", buffer_type="auto_broadcast") Bb = tvm.tir.decl_buffer(B.shape, B.dtype, name="Bb", buffer_type="auto_broadcast") s = te.create_schedule(C.op) fadd = tvm.build(s, [A, B, C], target='llvm', name='bcast_add', binds={A:Ab, B:Bb}) dev = tvm.cpu(0) a = tvm.nd.array(np.random.uniform(size=(2, 4, 3)).astype(A.dtype), dev) b = tvm.nd.array(np.random.uniform(size=(2, 1, 3)).astype(B.dtype), dev) c = tvm.nd.array(np.zeros((2, 4, 3), dtype=C.dtype), dev) fadd(a, b, c) tvm.testing.assert_allclose(c.numpy(), a.numpy() + b.numpy())
备注
Buffer data structure reflects the DLTensor structure in dlpack. While DLTensor data structure is very general, it is usually helpful to create function that only handles specific case of data structure and make compiled function benefit from it.
If user pass strides and elem_offset is passed as None when constructing the function, then the function will be specialized for the DLTensor that is compact and aligned. If user pass a fully generic symbolic array to the strides, then the resulting function becomes fully generic.
- tvm.tir.div(a, b, span=None)[源代码]#
Compute a / b as in C/C++ semantics.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
When operands are integers, returns truncdiv(a, b, span).
- tvm.tir.dp4a(vec1, vec2, acc=0)[源代码]#
Dot product of two int8x4 vectors and add an optional accumulator
- 参数:
vec1 (int8x4) -- The input vector.
vec2 (int8x4) -- The input vector.
acc (int32) -- The accumulator.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.end_profile_intrinsic(id)[源代码]#
End profile intrinsic. :param id: The intrinsic id. :type id: int
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.get_active_lane_mask(dtype, base, limit)[源代码]#
Calculate a predicate mask given an upper bound (limit) and a current value (base).
It will be lowered to the llvm.get.active.lane.mask intrinsic. (https://llvm.org/docs/LangRef.html#llvm-get-active-lane-mask-intrinsics)
- tvm.tir.get_vscale_expr(dtype: str | DataType, min_size: int = 128) PrimExpr [源代码]#
Create a datatype dependent scalable expression.
- tvm.tir.if_then_else(cond, t, f, span=None)[源代码]#
Conditional selection expression.
- 参数:
- 返回:
result -- The result of conditional expression.
- 返回类型:
备注
Unlike Select, if_then_else will not execute the branch that does not satisfy the condition. You can use it to guard against out of bound access. Unlike Select, if_then_else cannot be vectorized if some lanes in the vector have different conditions.
- tvm.tir.ignore_loop_partition(predicate) PrimExpr [源代码]#
Annotate a predicate not be considered as target condition of loop partition.
- 参数:
predicate (PrimExpr) -- The annotated predicate expression.
- tvm.tir.indexdiv(a, b, span=None)[源代码]#
Compute floor(a / b) where a and b are non-negative.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness.
- tvm.tir.indexmod(a, b, span=None)[源代码]#
Compute the remainder of indexdiv. a and b are non-negative.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness.
- tvm.tir.layout(layout_str: str, dtype: str = 'int32') Layout [源代码]#
Create a layout node from a string.
- 参数:
layout_str (str) -- A layout representation is composed of upper cases, lower cases and numbers, where upper case indicates a primal axis and the corresponding lower case with factor size indicates the subordinate axis. For example, NCHW16c can describe a 5-D tensor of [batch_size, channel, height, width, channel_block]. Here subordinate axis channel_block=16 is the factor size of the primal axis C (channel).
dtype (str) -- The dtype of generated axes vars in the returned layout. It is required to be integer type.
- 返回:
layout -- The created layout
- 返回类型:
- tvm.tir.make_filled_simdgroup_matrix(d: Var, index: PrimExpr, value: PrimExpr, col: int = 8, row: int = 8)[源代码]#
Create a filled SIMDGroup matrix
- tvm.tir.max(expr, axis, where=None, init=None, *args)#
Create a max expression over axis.
- 参数:
- 返回:
value -- The result value.
- 返回类型:
示例
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this max reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.max represents tvm.te.max or tvm.tir.max. B = te.compute((m,), lambda i: tvm.max(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: max_res = tvm.max(m, n)
- tvm.tir.min(expr, axis, where=None, init=None, *args)#
Create a min expression over axis.
- 参数:
- 返回:
value -- The result value.
- 返回类型:
示例
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this min reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.min represents tvm.te.min or tvm.tir.min. B = te.compute((m,), lambda i: tvm.min(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: min_res = tvm.min(m, n)
- tvm.tir.mma_fill(dtype, local_size, local_ptr, offset)[源代码]#
TVM intrinsic for zero-initalizing an MMA accumulation registor
- tvm.tir.mma_store(dtype, m, n, dst_ptr, src_ptr, src_offset, dst_stride)[源代码]#
TVM intrinsic for storing the result of PTX MMA into a destination pointer
- 参数:
dtype (str) -- The data type of the result.
m (IntImm) -- The shape of mma fragment.
n (IntImm) -- The shape of mma fragment.
dst_ptr (Var) -- The destination pointer variable.
src_ptr (Var) -- The source pointer variable.
src_offset (Expr) -- The source offset.
dst_stride (Var) -- The destination stride.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.nearbyint(x, span=None)[源代码]#
Round elements of the array to the nearest integer. This intrinsic uses llvm.nearbyint instead of llvm.round which is faster but will results different from te.round. Notably nearbyint rounds according to the rounding mode, whereas te.round (llvm.round) ignores that. For differences between the two see: https://en.cppreference.com/w/cpp/numeric/math/round https://en.cppreference.com/w/cpp/numeric/math/nearbyint
- tvm.tir.ptx_arrive_barrier(barrier_id)[源代码]#
TVM intrinsic for ptx barrier arrival using mbarrier.arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-arrive
- tvm.tir.ptx_arrive_barrier_expect_tx(barrier_id, byte_count)[源代码]#
TVM intrinsic for ptx barrier arrival with expect tx using mbarrier.arrive.expect_tx https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-expect-tx-operation
- tvm.tir.ptx_commit_group()[源代码]#
TVM intrinsic for ptx async copy commit https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-commit-group
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.ptx_cp_async(dtype, shared_ptr, shared_offset, global_ptr, global_offset, bytes)[源代码]#
TVM intrinsic for ptx async copy from global to shared memory using cp.async https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async
- 参数:
dtype (str) -- The data type of the result.
shared_ptr (Var) -- The shared memory pointer variable.
shared_offset (Expr) -- The offset of shared memory pointer.
global_ptr (Var) -- The global memory pointer variable.
global_offset (Expr) -- The offset of global memory pointer.
bytes (int) -- The data size to copy.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.ptx_cp_async_barrier(barrier_id)[源代码]#
TVM intrinsic for ptx async copy barrier using cp.async.mbarrier.arrive https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-cp-async-mbarrier-arrive
- tvm.tir.ptx_cp_async_bulk(dtype, shared_ptr, shared_offset, global_ptr, global_offset, bytes, barrier_id)[源代码]#
TVM intrinsic for ptx async copy from global to shared memory using cp.async.bulk https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-bulk
- 参数:
dtype (str) -- The data type of the result.
shared_ptr (Var) -- The shared memory pointer variable.
shared_offset (Expr) -- The offset of shared memory pointer.
global_ptr (Var) -- The global memory pointer variable.
global_offset (Expr) -- The offset of global memory pointer.
bytes (int) -- The data size to copy.
barrier_id (int) -- The ID of the barrier shared memory pointer.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.ptx_init_barrier_thread_count(barrier_id, thread_count)[源代码]#
TVM intrinsic for ptx barrier initialization of thread count using mbarrier.init https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-init
- tvm.tir.ptx_ldmatrix(dtype, trans, num, type, local_ptr, local_offset, smem_ptr, smem_offset)[源代码]#
TVM intrinsic for ptx load matrix from shared memory https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-ldmatrix
- 参数:
dtype (str) -- The data type of the result.
trans (bool) -- The matrix is loaded in column-major format.
num (IntImm) -- The number of matrices.
type (Literal[".b16"]) -- The data type of the matrices.
local_ptr (Var) -- The local pointer variable.
local_offset (Expr) -- The offset of local pointer.
smem_ptr (Var) -- The shared memory pointer variable.
smem_offset (Expr) -- The offset of shared memort pointer.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.ptx_mma(dtype, shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, multiplicand_a, a_index, multiplicand_b, b_index, accumulator, c_index, saturate, operator=None)[源代码]#
TVM intrinsic for ptx tensor core mma instructions https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-for-mma
- 参数:
dtype (str) -- The data type of the result.
shape (str) -- The shape of mma fragment.
A_layout (Literal["row", "col"]) -- The layout of multiplicand fragment A.
B_layout (Literal["row", "col"]) -- The layout of multiplicand fragment B.
A_dtype (str) -- The data type of multiplicand fragment A.
B_dtype (str) -- The data type of multiplicand fragment B.
C_dtype (str) -- The data type of accumulator fragment C.
multiplicand_a (Var) -- The multiplicand fragment A variable.
a_index (Expr) -- The index of multiplicand fragment A.
multiplicand_b (Var) -- The multiplicand fragment B variable.
b_index (Expr) -- The index of multiplicand fragment A.
accumulator (Var) -- The accumulator fragment C variable.
c_index (Expr) -- The index of accumulator fragment C.
saturate (bool) -- The optional saturation at the output.
operator (Optional[Literal["xor", "and"]]) -- The 1-bit operator.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.ptx_mma_sp(dtype, shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, multiplicand_a, a_index, multiplicand_b, b_index, accumulator, c_index, metadata, meta_index, sparse_selector, saturate)[源代码]#
TVM intrinsic for sparse tensor core ptx instructions https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-for-sparse-mma
- 参数:
dtype (str) -- The data type of the result.
shape (str) -- The shape of mma fragment.
A_layout (Literal["row", "col"]) -- The layout of multiplicand fragment A.
B_layout (Literal["row", "col"]) -- The layout of multiplicand fragment B.
A_dtype (str) -- The data type of multiplicand fragment A.
B_dtype (str) -- The data type of multiplicand fragment B.
C_dtype (str) -- The data type of multiplicand fragment C.
multiplicand_a (Var) -- The multiplicand fragment A variable.
a_index (Expr) -- The index of multiplicand fragment A.
multiplicand_b (Var) -- The multiplicand fragment B variable.
b_index (Expr) -- The index of multiplicand fragment B.
accumulator (Var) -- The accumulator fragment C variable.
c_index (Expr) -- The index of accumulator fragment C.
metadata (Expr) -- The metadata of operand.
meta_index (Expr) -- The metadata index of operand.
sparse_selector (Expr) -- The sparse selector indicating the thread that stores the metadata.
saturate (bool) -- The optional saturation at the output.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.ptx_wait_barrier(barrier_id)[源代码]#
TVM intrinsic for ptx barrier wait using mbarrier.try_wait https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#parallel-synchronization-and-communication-instructions-mbarrier-test-wait-mbarrier-try-wait
- tvm.tir.ptx_wait_group(num)[源代码]#
TVM intrinsic for ptx async copy wait https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async-wait-group
- tvm.tir.q_multiply_shift(x, y, q, s)[源代码]#
Execute a multiplication between two Q-numbers x and y followed by a right shift s. The mathematical expression is:
out = round(x*y*2^-s)
More about Q-numbers here: https://en.wikipedia.org/wiki/Q_(number_format) The rounding rule is to the nearest value, rounding half up (i.e., round(x.1) = x and round (x.5) = x+1)
- tvm.tir.q_multiply_shift_per_axis(x: PrimExpr, y: PrimExpr, ls: PrimExpr, rs: PrimExpr, q: IntImm, is_lshift_required: IntImm, is_rshift_required: IntImm)[源代码]#
Execute a multiplication between two Q-numbers x and y
- 参数:
x (PrimExpr) -- First Q-number.
y (PrimExpr) -- Second Q-number.
ls (PrimExpr) -- Integer left shift.
rs (PrimExpr) -- Integer right shift.
q (IntImm) -- Number of fractional bits in x and y. Needs to be > 0.
is_lshift_required (IntImm) -- Whether we need to do left shift or not.
is_rshift_required (IntImm) -- Whether we need to do right shift or not.
- 返回:
z -- The result.
- 返回类型:
- tvm.tir.simdgroup_load(d: Var, index: PrimExpr, ptr: PrimExpr, stride: PrimExpr, col: int = 8, row: int = 8, transpose_matrix: bool = False)[源代码]#
Load data from device memory or threadgroup memory to simdgroup
- 参数:
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.simdgroup_multiply_accumulate(d: Var, index_d: PrimExpr, a: Var, index_a: PrimExpr, b: Var, index_b: PrimExpr, c: Var, index_c: PrimExpr)[源代码]#
Multiply and accumulate two matrices in simdgroup i.e. d = a * b + c
- 参数:
d (Var) -- The destination matrix.
index_d (PrimExpr) -- The index of the destination matrix.
a (Var) -- The first matrix.
index_a (PrimExpr) -- The index of the first matrix.
b (Var) -- The second matrix.
index_b (PrimExpr) -- The index of the second matrix.
c (Var) -- The third matrix.
index_c (PrimExpr) -- The index of the third matrix.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.simdgroup_store(d: PrimExpr, index: PrimExpr, ptr: PrimExpr, stride: PrimExpr, col: int = 8, row: int = 8, transpose_matrix: bool = False)[源代码]#
Store data from simdgroup to device memory or threadgroup memory
- 参数:
- transpose_matrixbool
Whether to transpose the matrix.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.start_profile_intrinsic(id)[源代码]#
Start profile intrinsic. :param id: The intrinsic id. :type id: int
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.sum(expr, axis, where=None, init=None, *args)#
Create a sum expression over axis.
- 参数:
- 返回:
value -- The result value.
- 返回类型:
示例
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this sum reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.sum represents tvm.te.sum or tvm.tir.sum. B = te.compute((m,), lambda i: tvm.sum(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: sum_res = tvm.sum(m, n)
- tvm.tir.trace(args, trace_action='tvm.default_trace_action')[源代码]#
Trace tensor data at the runtime.
The trace function allows to trace specific tensor at the runtime. The tracing value should come as last argument. The trace action should be specified, by default tvm.default_trace_action is used.
- 参数:
args (list of Expr or Buffers.) -- Positional arguments.
trace_action (str.) -- The name of the trace action.
- 返回:
call -- The call expression.
- 返回类型:
参见
tvm.tir.call_packed
Creates packed function.
- tvm.tir.trunc(x, span=None)[源代码]#
Get truncated value of the input.
The truncated value of the scalar x is the nearest integer i which is closer to zero than x is.
- tvm.tir.truncdiv(a, b, span=None)[源代码]#
Compute the truncdiv of two expressions.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
This is the default integer division behavior in C.
- tvm.tir.truncmod(a, b, span=None)[源代码]#
Compute the truncmod of two expressions.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
This is the default integer division behavior in C.
- tvm.tir.tvm_access_ptr(ptype, data, offset, extent, rw_mask)[源代码]#
Get head access address with memory access pattern info
- tvm.tir.tvm_bmma_sync(fragment_d, index_d, fragment_a, index_a, fragment_b, index_b, fragment_c, index_c)[源代码]#
TVM intrinsic for tensor core bmma_sync operators
- 参数:
fragment_d (Var) -- The bwmma fragment_d.
index_d (Expr) -- The fragment_d index.
fragment_a (Var) -- The bwmma fragment_a.
index_a (Expr) -- The fragment_a index.
fragment_b (Var) -- The bwmma fragment_b.
index_b (Expr) -- The fragment_b index.
fragment_c (Var) -- The bwmma fragment_c.
index_c (Expr) -- The fragment_c index.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_check_return(expected, return_unexpected, nested_call)[源代码]#
Return new on stack dtype[num] :param expected: The expected return code. :type expected: int :param return_unexpected: The unexpected return code. :type return_unexpected: int :param nested_call: The call expression to check return. :type nested_call: PrimExpr
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_fill_fragment(fragment, m, n, k, index, value)[源代码]#
TVM intrinsic for tensor core fill_fragment operators
- 参数:
fragment (Var) -- The wmma fragment
m (UIntImm) -- The shape of wmma fragment.
n (UIntImm) -- The shape of wmma fragment.
k (UIntImm) -- The shape of wmma fragment.
index (Expr) -- The fragment index.
value (Expr) -- The value to be filled in fragment.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_load_matrix_sync(fragment, m, n, k, index, buffer_ptr, stride, layout)[源代码]#
TVM intrinsic for tensor core load operators
- 参数:
fragment (Var) -- The wmma fragment.
m (UIntImm) -- The shape of wmma fragment.
n (UIntImm) -- The shape of wmma fragment.
k (UIntImm) -- The shape of wmma fragment.
index (Expr) -- The fragment index.
buffer_ptr (Expr) -- The fragment buffer pointer.
stride (Expr) -- The fragment stride.
layout (Literal["row_major", "column_major"]) -- The fragment layout.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_mma_sync(fragment_d, index_d, fragment_a, index_a, fragment_b, index_b, fragment_c, index_c)[源代码]#
TVM intrinsic for tensor core mma_sync operators
- 参数:
fragment_d (Var) -- The wmma fragment_d.
index_d (Expr) -- The fragment_d index.
fragment_a (Var) -- The wmma fragment_a.
index_a (Expr) -- The fragment_a index.
fragment_b (Var) -- The wmma fragment_b.
index_b (Expr) -- The fragment_b index.
fragment_c (Var) -- The wmma fragment_c.
index_c (Expr) -- The fragment_c index.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_stack_make_array(data, shape, strides, ndim, arr_dtype, elem_offset)[源代码]#
Allocate a NDArray(DLTensor) on stack, return the handle
- 参数:
data (Expr) -- The data of array.
shape (Expr) -- The shape of array.
strides (Expr) -- The strides of array.
ndim (Expr) -- The dimensions of array.
arr_dtype (Expr) -- The data type of array.
elem_offse (Expr) -- The element offset of array.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_store_matrix_sync(fragment, m, n, k, index, buffer_ptr, stride, layout)[源代码]#
TVM intrinsic for tensor core store operators
- 参数:
fragment (Var) -- The wmma fragment.
m (UIntImm) -- The shape of wmma fragment.
n (UIntImm) -- The shape of wmma fragment.
k (UIntImm) -- The shape of wmma fragment.
index (Expr) -- The fragment index.
buffer_ptr (Expr) -- The fragment buffer pointer.
stride (Expr) -- The fragment stride.
layout (Literal["row_major", "column_major"]) -- The fragment layout.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_thread_allreduce(*freduce_args)[源代码]#
Perform allreduce inside threadblock.
- 参数:
freduce_args (Expr) -- The args.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.tvm_tuple(*value)[源代码]#
Create a tuple structure in value field of AttrStmt
- 参数:
value (Expr) -- The value in tuple.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.type_annotation(dtype)[源代码]#
Create a type annotation expression
- 参数:
dtype (Expr) -- The data type.
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.undef()[源代码]#
Returns an initialized but arbitrary value
- 返回:
call -- The call expression.
- 返回类型:
- tvm.tir.vscale()[源代码]#
Get the target's vscale value. It will be lowered to llvm.vscale intrinsic (https://llvm.org/docs/LangRef.html#llvm-vscale-intrinsic) :returns: call -- Call to the vscale intrinsic :rtype: PrimExpr