tvm.te#
Namespace for Tensor Expression Language
Classes:
Scalar operation. |
|
|
External operation. |
|
Hybrid operation. |
Placeholder operation. |
|
|
Scan operation. |
|
Schedule for all the stages. |
|
Specialized condition to enable op specialization. |
|
A Stage represents schedule for one operation. |
|
Tensor object, to construct, see function.Tensor |
Tensor operation. |
|
|
Auxiliary data structure for enable slicing syntax from tensor. |
Functions:
|
Get absolute value of the input element-wise. |
|
Take acos of input x. |
|
Take acos of input x. |
|
Generic add operator. |
|
Create a new expression of the intersection of all conditions in the |
|
Create a new experssion of the union of all conditions in the arguments |
|
Take asin of input x. |
|
Take asinh of input x. |
|
Take atan of input x. |
|
Take atanh of input x. |
|
Take ceil of float input x. |
|
Create a commutative reducer for reduction. |
|
Construct a new tensor by computing over the shape domain. |
|
Create a new constant with specified value and dtype |
|
Take cos of input x. |
|
Take cosh of input x. |
|
Create a TensorIR PrimFunc from tensor expression |
|
Create a schedule for list of ops |
|
Declare a tensor intrinsic function. |
|
Compute a / b as in C/C++ semantics. |
|
Take gauss error function of the input x. |
|
Take exponential of input x. |
|
Compute several tensors via an extern function. |
|
Compute tensors via a schedulable TIR PrimFunc |
|
Take floor of float input x. |
|
Compute the floordiv of two expressions. |
|
Compute the floormod of two expressions. |
|
Return the remainder of x divided by y with the same sign as x. |
|
Perform reverse-mode automatic differentiation. |
|
Conditional selection expression. |
|
Compute floor(a / b) where a and b are non-negative. |
|
Compute the remainder of indexdiv. |
|
Check if input value is finite. |
|
Check if input value is infinite. |
|
Check if input value is Nan. |
|
Take log of input x. |
|
Take log10 of input x. |
|
Take log2 of input x. |
|
Create a max expression over axis. |
|
maximum value of dtype |
|
Create a min expression over axis. |
|
minimum value of dtype |
|
Generic multiply operator. |
|
Round elements of the array to the nearest integer. |
|
Construct an empty tensor object. |
|
Count the number of set bits in input x. |
|
x power y |
|
Create a new IterVar for reduction. |
|
Round elements of the array to the nearest integer. |
|
Take reciprocal of square root of input x. |
|
Construct new tensors by scanning over axis. |
|
Quick function to get sigmoid |
|
Take sin of input x. |
|
Take sinh of input x. |
|
Create a new variable represents a tensor shape size, which is non-negative. |
|
Take square root of input x. |
|
Generic subtract operator. |
|
Create a sum expression over axis. |
|
The operator tag scope. |
|
Take tan of input x. |
|
Take hyperbolic tanh of input x. |
|
Create a new IterVar to represent thread index. |
|
Trace tensor data at the runtime. |
|
Get truncated value of the input. |
|
Compute the truncdiv of two expressions. |
|
Compute the truncmod of two expressions. |
|
Create a new variable with specified name and dtype |
- class tvm.te.HybridOp[源代码]#
Hybrid operation.
Attributes:
Represent the IterVar axis, also defined when it is a HybridOp
- property axis#
Represent the IterVar axis, also defined when it is a HybridOp
- class tvm.te.ScanOp[源代码]#
Scan operation.
Attributes:
Represent the scan axis, only defined when it is a ScanOp
- property scan_axis#
Represent the scan axis, only defined when it is a ScanOp
- class tvm.te.Schedule[源代码]#
Schedule for all the stages.
Methods:
cache_read
(tensor, scope, readers)Create a cache read of original tensor for readers.
cache_write
(tensor, scope)Create a cache write of original tensor, before storing into tensor.
create_group
(outputs, inputs[, include_inputs])Create stage group by giving output and input boundary.
Build a normalized schedule from the current schedule.
rfactor
(tensor, axis[, factor_axis])Factor a reduction axis in tensor's schedule to be an explicit axis.
- cache_read(tensor, scope, readers)[源代码]#
Create a cache read of original tensor for readers.
This will mutate the body of the readers. A new cache stage will be created for the tensor. Call this before doing any split/fuse schedule.
- cache_write(tensor, scope)[源代码]#
Create a cache write of original tensor, before storing into tensor.
This will mutate the body of the tensor. A new cache stage will created before feed into the tensor.
This function can be used to support data layout transformation. If there is a split/fuse/reorder on the data parallel axis of tensor before cache_write is called. The intermediate cache stores the data in the layout as the iteration order of leave axis. The data will be transformed back to the original layout in the original tensor. User can further call compute_inline to inline the original layout and keep the data stored in the transformed layout.
- create_group(outputs, inputs, include_inputs=False)[源代码]#
Create stage group by giving output and input boundary.
The operators between outputs and inputs are placed as member of group. outputs are include in the group, while inputs are not included.
- 参数:
- 返回:
group -- A virtual stage represents the group, user can use compute_at to move the attachment point of the group.
- 返回类型:
- normalize()[源代码]#
Build a normalized schedule from the current schedule.
Insert necessary rebase to make certain iter var to start from 0. This is needed before bound inference and followup step.
- 返回:
sch -- The normalized schedule.
- 返回类型:
- class tvm.te.SpecializedCondition(conditions)[源代码]#
Specialized condition to enable op specialization.
Methods:
current
()Returns the current specialized condition
- class tvm.te.Stage[源代码]#
A Stage represents schedule for one operation.
Methods:
bind
(ivar, thread_ivar)Bind ivar to thread index thread_ivar
compute_at
(parent, scope)Attach the stage at parent's scope
Mark stage as inline
Attach the stage at parent, and mark it as root
Compute the current stage via double buffering.
env_threads
(threads)Mark threads to be launched at the outer scope of composed op.
fuse
(*args)Fuse multiple consecutive iteration variables into a single iteration variable.
parallel
(var)Parallelize the iteration.
pragma
(var, pragma_type[, pragma_value])Annotate the iteration with pragma
prefetch
(tensor, var, offset)Prefetch the specified variable
reorder
(*args)reorder the arguments in the specified order.
Compute the current stage via rolling buffering.
set_scope
(scope)Set the thread scope of this stage
set_store_predicate
(predicate)Set predicate under which store to the array can be performed.
split
(parent[, factor, nparts, ...])Split the stage either by factor providing outer scope, or both
storage_align
(axis, factor, offset)Set alignment requirement for specific axis
tensorize
(var, tensor_intrin)Tensorize the computation enclosed by var with tensor_intrin
tile
(x_parent, y_parent, x_factor, y_factor)Perform tiling on two dimensions
transform_layout
(mapping_function)Defines the layout transformation for the current stage's tensor.
unroll
(var)Unroll the iteration.
vectorize
(var)Vectorize the iteration.
- compute_root()[源代码]#
Attach the stage at parent, and mark it as root
- 参数:
parent (Stage) -- The parent stage
- double_buffer()[源代码]#
Compute the current stage via double buffering.
This can only be applied to intermediate stage. This will double the storage cost of the current stage. Can be useful to hide load latency.
- env_threads(threads)[源代码]#
Mark threads to be launched at the outer scope of composed op.
- 参数:
threads (list of threads) -- The threads to be launched.
- fuse(*args)[源代码]#
Fuse multiple consecutive iteration variables into a single iteration variable.
fused = fuse(...fuse(fuse(args[0], args[1]), args[2]),..., args[-1]) The order is from outer to inner.
- parallel(var)[源代码]#
Parallelize the iteration.
- 参数:
var (IterVar) -- The iteration to be parallelized.
- pragma(var, pragma_type, pragma_value=None)[源代码]#
Annotate the iteration with pragma
This will translate to a pragma_scope surrounding the corresponding loop generated. Useful to support experimental features and extensions.
- 参数:
备注
Most pragmas are advanced/experimental features and may subject to change. List of supported pragmas:
debug_skip_region
Force skip the region marked by the axis and turn it into no-op. This is useful for debug purposes.
parallel_launch_point
Specify to launch parallel threads outside the specified iteration loop. By default the threads launch at the point of parallel construct. This pragma moves the launching point to even outer scope. The threads are launched once and reused across multiple parallel constructs as BSP style program.
parallel_barrier_when_finish
Insert a synchronization barrier between working threads after the specified loop iteration finishes.
parallel_stride_pattern
Hint parallel loop to execute in strided pattern.
for (int i = task_id; i < end; i += num_task)
- rolling_buffer()[源代码]#
Compute the current stage via rolling buffering.
This can only be applied to intermediate stage. This will change the storage cost of the current stage.
- set_scope(scope)[源代码]#
Set the thread scope of this stage
- 参数:
scope (str) -- The thread scope of this stage
- set_store_predicate(predicate)[源代码]#
Set predicate under which store to the array can be performed.
Use this when there are duplicated threads doing the same store and we only need one of them to do the store.
- 参数:
predicate (Expr) -- The guard condition fo store.
- split(parent, factor=None, nparts=None, disable_predication=False)[源代码]#
Split the stage either by factor providing outer scope, or both
- 参数:
parent (IterVar) -- The parent iter var.
factor (Expr, optional) -- The splitting factor
nparts (Expr, optional) -- The number of outer parts.
disable_predication (bool, optional) --
If enabled, don't create a predicate for guarding the loop. This can be useful when splitting with scalable factors that the schedule writer knows are divisible by the loop bound.
Warning: enabling this feature may result in incorrect code generation if not used carefully.
- 返回:
outer (IterVar) -- The outer variable of iteration.
inner (IterVar) -- The inner variable of iteration.
- storage_align(axis, factor, offset)[源代码]#
Set alignment requirement for specific axis
This ensures that stride[axis] == k * factor + offset for some k. This is useful to set memory layout to for more friendly memory access pattern. For example, we can set alignment to be factor=2, offset=1 to avoid bank conflict for thread access on higher dimension in GPU shared memory.
- tensorize(var, tensor_intrin)[源代码]#
Tensorize the computation enclosed by var with tensor_intrin
- 参数:
var (IterVar) -- The iteration boundary of tensorization.
tensor_intrin (TensorIntrin) -- The tensor intrinsic used for computation.
- tile(x_parent, y_parent, x_factor, y_factor)[源代码]#
Perform tiling on two dimensions
The final loop order from outmost to inner most are [x_outer, y_outer, x_inner, y_inner]
- 参数:
- 返回:
x_outer (IterVar) -- Outer axis of x dimension
y_outer (IterVar) -- Outer axis of y dimension
x_inner (IterVar) -- Inner axis of x dimension
p_y_inner (IterVar) -- Inner axis of y dimension
- transform_layout(mapping_function: Callable[[...], List[PrimExpr]])[源代码]#
Defines the layout transformation for the current stage's tensor.
The map from initial_indices to final_indices must be an invertible affine transformation. This method may be called more than once for a given tensor, in which case each transformation is applied sequentially.
If the stage is a ComputeOp, then the iteration order of the compute stage is rewritten to be a row-major traversal of the tensor, and the new loop iteration variables are returned. For all other stages, the loop iteration order is unmodified, and the return value is None.
- 参数:
mapping_function (Callable[..., List[tvm.tir.PrimExpr]]) -- A callable that accepts N arguments of type tvm.tir.Var, and outputs a list of PrimExpr. The input arguments represent the location of a value in the current stage's tensor, using the pre-transformation layout. The return value of the function gives the location of that value in the current stage's tensor, using the post-transformation layout.
- 返回:
new_iter_vars -- If the stage is a ComputeOp, then the return will be the updated loop iteration variables over the data array, in the same order as the output values from the mapping_function.
Otherwise, the return value is None.
- 返回类型:
Optional[List[tvm.tir.IterVar]]
示例
# ``A`` is a tensor whose compute definition is in NHWC # format, and should be transformed into NCHWc format. s[A].transform_layout( lambda n,h,w,c: [n, c//4, h, w, c%4] )
# ``A`` is a tensor whose compute definition is in an # arbitrary format, and should be transformed such that # the last index is split, with the slower-changing index # of the split placed at the slowest changing dimension. s[A].transform_layout( lambda *indices, i: [i//4, *indices, i%4] )
# ``B`` is a tensor defined by te.compute to be a copy of # ``A`, and should be transformed such that ``B``'s layout # is a transpose of ``A``'s layout. The loop iteration # that computes ``B`` will correspond to ``B``'s memory # layout. A = te.placeholder([n,m]) B = te.compute(A.shape, lambda i,j: A[i,j]) s = te.create_schedule(B.op) s[B].transform_layout(lambda i,j: [j,i])
- class tvm.te.Tensor[源代码]#
Tensor object, to construct, see function.Tensor
Attributes:
Axis of the tensor.
Dimension of the tensor.
The corressponding
Operation
.The output shape of the tensor.
The output value index the tensor corresponds to.
- property axis#
Axis of the tensor.
- property ndim#
Dimension of the tensor.
- property op#
The corressponding
Operation
.
- property shape#
The output shape of the tensor.
- property value_index#
The output value index the tensor corresponds to.
- class tvm.te.TensorSlice(tensor, indices)[源代码]#
Auxiliary data structure for enable slicing syntax from tensor.
Methods:
asobject
()Convert slice to object.
Attributes:
Data content of the tensor.
- property dtype#
Data content of the tensor.
- tvm.te.all(*args, span=None)[源代码]#
- Create a new expression of the intersection of all conditions in the
arguments
- tvm.te.any(*args, span=None)[源代码]#
Create a new experssion of the union of all conditions in the arguments
- tvm.te.comm_reducer(fcombine, fidentity, name='reduce')[源代码]#
Create a commutative reducer for reduction.
- 参数:
fcombine (function(Expr -> Expr -> Expr)) -- A binary function which takes two Expr as input to return a Expr.
fidentity (function(str -> Expr)) -- A function which takes a type string as input to return a const Expr.
- 返回:
reducer -- A function which creates a reduce expression over axis. There are two ways to use it:
accept (expr, axis, where) to produce an Reduce Expr on specified axis;
simply use it with multiple Exprs.
- 返回类型:
function
示例
n = te.var("n") m = te.var("m") mysum = te.comm_reducer(lambda x, y: x+y, lambda t: tvm.tir.const(0, dtype=t), name="mysum") A = te.placeholder((n, m), name="A") k = te.reduce_axis((0, m), name="k") B = te.compute((n,), lambda i: mysum(A[i, k], axis=k), name="B")
- tvm.te.compute(shape, fcompute, name='compute', tag='', attrs=None, varargs_names=None)[源代码]#
Construct a new tensor by computing over the shape domain.
The compute rule is result[axis] = fcompute(axis)
- 参数:
shape (Tuple of Expr) -- The shape of the tensor
fcompute (lambda function of indices-> value) -- Specifies the input source expression
name (str, optional) -- The name hint of the tensor
tag (str, optional) -- Additional tag information about the compute.
attrs (dict, optional) -- The additional auxiliary attributes about the compute.
varargs_names (list, optional) -- The names to use for each of the varargs. If not supplied, the varargs will be called i1, i2, ...
- 返回:
tensor -- The created tensor
- 返回类型:
- tvm.te.const(value, dtype='int32', span=None)[源代码]#
Create a new constant with specified value and dtype
- tvm.te.create_prim_func(ops: List[Tensor | Var], index_dtype_override: str | None = None) PrimFunc [源代码]#
Create a TensorIR PrimFunc from tensor expression
- 参数:
ops (List[Union[_tensor.Tensor, tvm.tir.Var]]) -- The source expression.
示例
We define a matmul kernel using following code:
import tvm from tvm import te from tvm.te import create_prim_func import tvm.script A = te.placeholder((128, 128), name="A") B = te.placeholder((128, 128), name="B") k = te.reduce_axis((0, 128), "k") C = te.compute((128, 128), lambda x, y: te.sum(A[x, k] * B[y, k], axis=k), name="C") func = create_prim_func([A, B, C]) print(func.script())
If we want to use TensorIR schedule to do transformations on such kernel, we need to use create_prim_func([A, B, C]) to create a schedulable PrimFunc. The generated function looks like:
@T.prim_func def tir_matmul(a: T.handle, b: T.handle, c: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) C = T.match_buffer(c, (128, 128)) for i, j, k in T.grid(128, 128, 128): with T.block(): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): C[vi, vj] = 0.0 C[vi, vj] += A[vi, vk] * B[vj, vk]
- 返回:
func -- The created function.
- 返回类型:
- tvm.te.create_schedule(ops)[源代码]#
Create a schedule for list of ops
- 参数:
ops (list of Operations) -- The source expression.
- 返回:
sch -- The created schedule.
- 返回类型:
- tvm.te.decl_tensor_intrin(op, fcompute, name='tensor_intrin', binds=None, scalar_params=None, default_buffer_params=None)[源代码]#
Declare a tensor intrinsic function.
- 参数:
op (Operation) -- The symbolic description of the intrinsic operation
fcompute (lambda function of inputs, outputs-> stmt) --
Specifies the IR statement to do the computation. See the following note for function signature of fcompute
备注
Parameters
ins (list of
tvm.tir.Buffer
) - Placeholder for each inputsouts (list of
tvm.tir.Buffer
) - Placeholder for each outputs
Returns
stmt (
tvm.tir.Stmt
, or tuple of three stmts)If a single stmt is returned, it represents the body
If tuple of three stmts are returned they corresponds to body, reduce_init, reduce_update
name (str, optional) -- The name of the intrinsic.
binds (dict of
Tensor
totvm.tir.Buffer
, optional) -- Dictionary that maps the Tensor to Buffer which specified the data layout requirement of the function. By default, a new compact buffer is created for each tensor in the argument.scalar_params (a list of variables used by op, whose values will be passed) -- as scalar_inputs when the tensor intrinsic is called.
default_buffer_params (Optional[dict]) -- Dictionary of buffer arguments to be passed when constructing a buffer.
- 返回:
intrin -- A TensorIntrin that can be used in tensorize schedule.
- 返回类型:
- tvm.te.div(a, b, span=None)[源代码]#
Compute a / b as in C/C++ semantics.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
When operands are integers, returns truncdiv(a, b, span).
- tvm.te.extern(shape, inputs, fcompute, name='extern', dtype=None, in_buffers=None, out_buffers=None, tag='', attrs=None)[源代码]#
Compute several tensors via an extern function.
- 参数:
shape (tuple or list of tuples.) -- The shape of the outputs.
fcompute (lambda function of inputs, outputs-> stmt) --
Specifies the IR statement to do the computation. See the following note for function signature of fcompute
备注
Parameters
ins (list of
tvm.tir.Buffer
) - Placeholder for each inputsouts (list of
tvm.tir.Buffer
) - Placeholder for each outputs
Returns
stmt (
tvm.tir.Stmt
) - The statement that carries out array computation.
name (str, optional) -- The name hint of the tensor
dtype (str or list of str, optional) -- The data types of outputs, by default dtype will be same as inputs.
in_buffers (tvm.tir.Buffer or list of tvm.tir.Buffer, optional) -- Input buffers.
out_buffers (tvm.tir.Buffer or list of tvm.tir.Buffer, optional) -- Output buffers.
- tag: str, optional
Additonal tag information about the compute.
- attrs: dict, optional
The additional auxiliary attributes about the compute.
- 返回:
tensor -- The created tensor or tuple of tensors contains multiple outputs.
- 返回类型:
示例
In the code below, C is generated by calling external PackedFunc tvm.contrib.cblas.matmul
A = te.placeholder((n, l), name="A") B = te.placeholder((l, m), name="B") C = te.extern((n, m), [A, B], lambda ins, outs: tvm.tir.call_packed( "tvm.contrib.cblas.matmul", ins[0], ins[1], outs[0], 0, 0), name="C")
- tvm.te.extern_primfunc(input_tensors: List[Tensor], primfunc: PrimFunc, **kwargs)[源代码]#
Compute tensors via a schedulable TIR PrimFunc
- 参数:
- 返回:
tensor -- The created tensor or tuple of tensors if it contains multiple outputs.
- 返回类型:
示例
In the code below, a TVMScript defined TIR PrimFunc is inlined into a TE ExternOp. Applying te.create_prim_func on this
A = te.placeholder((128, 128), name="A") B = te.placeholder((128, 128), name="B") @T.prim_func def before_split(a: T.handle, b: T.handle) -> None: A = T.match_buffer(a, (128, 128)) B = T.match_buffer(b, (128, 128)) for i, j in T.grid(128, 128): with T.block("B"): vi, vj = T.axis.remap("SS", [i, j]) B[vi, vj] = A[vi, vj] * 2.0 C = te.extern_primfunc([A, B], func)
- tvm.te.gradient(output, inputs, head=None)[源代码]#
Perform reverse-mode automatic differentiation.
- 参数:
output (Tensor) -- The tensor to differentiate.
inputs (List[Tensor]) -- The list of input tensors to be differentiated wrt.
head (Tensor) -- The adjoint of the output, in other words, some tensor, by which the Jacobians will be multiplied. Its shape must be of the form prefix + output.shape. If None is passed, the identity tensor of shape output.shape + output.shape will be used.
- 返回:
tensors -- The result gradient, in the same order as the inputs
- 返回类型:
List[Tensor]
示例
x = tvm.placeholder((32, 3, 28, 28), name='x') w1 = tvm.placeholder((10, 3, 3, 3), name='w1') w2 = tvm.placeholder((10, 10, 3, 3), name='w2') z1 = topi.nn.conv2d(x, w1, 1, 1, 1) z2 = topi.nn.conv2d(z1, w2, 1, 1, 1) y = topi.sum(z2) # produce gradients [dw1, dw2] = tvm.gradient(y, [w1, w2]) # produce Jacobians [jw1, jw2] = tvm.gradient(z2, [w1, w2]) # produce gradients, the head adjoint for z2 is provided manually [dw1, dw2] = tvm.gradient(z2, [w1, w2], topi.full_like(z2, 1.0))
- tvm.te.if_then_else(cond, t, f, span=None)[源代码]#
Conditional selection expression.
- 参数:
- 返回:
result -- The result of conditional expression.
- 返回类型:
备注
Unlike Select, if_then_else will not execute the branch that does not satisfy the condition. You can use it to guard against out of bound access. Unlike Select, if_then_else cannot be vectorized if some lanes in the vector have different conditions.
- tvm.te.indexdiv(a, b, span=None)[源代码]#
Compute floor(a / b) where a and b are non-negative.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness.
- tvm.te.indexmod(a, b, span=None)[源代码]#
Compute the remainder of indexdiv. a and b are non-negative.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
Use this function to split non-negative indices. This function may take advantage of operands' non-negativeness.
- tvm.te.max(expr, axis, where=None, init=None, *args)#
Create a max expression over axis.
- 参数:
- 返回:
value -- The result value.
- 返回类型:
示例
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this max reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.max represents tvm.te.max or tvm.tir.max. B = te.compute((m,), lambda i: tvm.max(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: max_res = tvm.max(m, n)
- tvm.te.min(expr, axis, where=None, init=None, *args)#
Create a min expression over axis.
- 参数:
- 返回:
value -- The result value.
- 返回类型:
示例
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this min reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.min represents tvm.te.min or tvm.tir.min. B = te.compute((m,), lambda i: tvm.min(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: min_res = tvm.min(m, n)
- tvm.te.nearbyint(x, span=None)[源代码]#
Round elements of the array to the nearest integer. This intrinsic uses llvm.nearbyint instead of llvm.round which is faster but will results different from te.round. Notably nearbyint rounds according to the rounding mode, whereas te.round (llvm.round) ignores that. For differences between the two see: https://en.cppreference.com/w/cpp/numeric/math/round https://en.cppreference.com/w/cpp/numeric/math/nearbyint
- tvm.te.reduce_axis(dom, name='rv', thread_tag='', span=None)[源代码]#
Create a new IterVar for reduction.
- tvm.te.scan(init, update, state_placeholder, inputs=None, name='scan', tag='', attrs=None)[源代码]#
Construct new tensors by scanning over axis.
- 参数:
init (Tensor or list of Tensor) -- The initial condition of first init.shape[0] timestamps
update (Tensor or list of Tensor) -- The update rule of the scan given by symbolic tensor.
state_placeholder (Tensor or list of Tensor) -- The placeholder variables used by update.
inputs (Tensor or list of Tensor, optional) -- The list of inputs to the scan. This is not required, but can be useful for the compiler to detect scan body faster.
name (str, optional) -- The name hint of the tensor
tag (str, optional) -- Additonal tag information about the compute.
attrs (dict, optional) -- The additional auxiliary attributes about the compute.
- 返回:
tensor -- The created tensor or tuple of tensors contains multiple outputs.
- 返回类型:
示例
# The following code is equivalent to numpy.cumsum m = te.var("m") n = te.var("n") X = te.placeholder((m, n), name="X") s_state = te.placeholder((m, n)) s_init = te.compute((1, n), lambda _, i: X[0, i]) s_update = te.compute((m, n), lambda t, i: s_state[t-1, i] + X[t, i]) res = tvm.te.scan(s_init, s_update, s_state, X)
- tvm.te.size_var(name='size', dtype='int32', span=None)[源代码]#
Create a new variable represents a tensor shape size, which is non-negative.
- tvm.te.sum(expr, axis, where=None, init=None, *args)#
Create a sum expression over axis.
- 参数:
- 返回:
value -- The result value.
- 返回类型:
示例
m = te.var("m") n = te.var("n") A = te.placeholder((m, n), name="A") k = te.reduce_axis((0, n), name="k") # there are two way to use this sum reducer: # mode 1, accept (expr, axis, where) to produce an Reduce Expr # tvm.sum represents tvm.te.sum or tvm.tir.sum. B = te.compute((m,), lambda i: tvm.sum(A[i, k], axis=k), name="B") # mode 2, simply use it with multiple Exprs: sum_res = tvm.sum(m, n)
- tvm.te.tag_scope(tag)[源代码]#
The operator tag scope.
- 参数:
tag (str) -- The tag name.
- 返回:
tag_scope -- The tag scope object, which can be used as decorator or context manger.
- 返回类型:
TagScope
示例
n = te.var('n') m = te.var('m') l = te.var('l') A = te.placeholder((n, l), name='A') B = te.placeholder((m, l), name='B') k = te.reduce_axis((0, l), name='k') with tvm.te.tag_scope(tag='matmul'): C = te.compute((n, m), lambda i, j: te.sum(A[i, k] * B[j, k], axis=k)) # or use tag_scope as decorator @tvm.te.tag_scope(tag="conv") def compute_relu(data): return te.compute(data.shape, lambda *i: tvm.tir.Select(data(*i) < 0, 0.0, data(*i)))
- tvm.te.thread_axis(dom=None, tag='', name='', span=None)[源代码]#
Create a new IterVar to represent thread index.
- 参数:
- 返回:
axis -- The thread itervar.
- 返回类型:
- tvm.te.trace(args, trace_action='tvm.default_trace_action')[源代码]#
Trace tensor data at the runtime.
The trace function allows to trace specific tensor at the runtime. The tracing value should come as last argument. The trace action should be specified, by default tvm.default_trace_action is used.
- 参数:
args (list of Expr or Buffers.) -- Positional arguments.
trace_action (str.) -- The name of the trace action.
- 返回:
call -- The call expression.
- 返回类型:
参见
tvm.tir.call_packed
Creates packed function.
- tvm.te.trunc(x, span=None)[源代码]#
Get truncated value of the input.
The truncated value of the scalar x is the nearest integer i which is closer to zero than x is.
- tvm.te.truncdiv(a, b, span=None)[源代码]#
Compute the truncdiv of two expressions.
- 参数:
- 返回:
res -- The result expression.
- 返回类型:
备注
This is the default integer division behavior in C.
tvm.te.hybrid#
Hybrid Programming APIs of TVM Python Package.
This package maps a subset of python to HalideIR so that: 1. Users can write some preliminary versions of the computation patterns have not been supported yet and verify it across the real execution and python semantic emulation. 2. So far, it is a text format dedicated to HalideIR Phase 0. Refer tvm.lower for more details. A larger ambition of this module is to support all levels of HalideIR.
Classes:
|
The usage of Hybrid Module is very similar to conventional TVM module, but conventional TVM module requires a function body which is already fully lowered. |
Functions:
|
Dump the current schedule to hybrid module |
|
A wrapper call of decorator package, differs to call time |
|
Decorate a python function as hybrid script. |
|
Another level of wrapper |
- class tvm.te.hybrid.HybridModule(src=None, name=None)[源代码]#
The usage of Hybrid Module is very similar to conventional TVM module, but conventional TVM module requires a function body which is already fully lowered. This contradicts to the fact that Hybrid Module is originally a text format for Phase 0 HalideIR. Thus, a totally separated module is defined.
Methods:
load
(path)Load the module from a python file
- tvm.te.hybrid.build(sch, inputs, outputs, name='hybrid_func')[源代码]#
Dump the current schedule to hybrid module
- 参数:
sch (tvm.te.Schedule) -- The schedule to be dumped
inputs (An array of Tensors or Vars) -- The inputs of the function body
outputs (An array of Tensors) -- The outputs of the function body
- 返回:
module -- The built results is wrapped in a HybridModule. The usage of HybridModule is roughly the same as normal TVM-built modules.
- 返回类型:
- tvm.te.hybrid.decorate(func, fwrapped)[源代码]#
A wrapper call of decorator package, differs to call time
- 参数:
func (function) -- The original function
fwrapped (function) -- The wrapped function
- tvm.te.hybrid.script(pyfunc)[源代码]#
Decorate a python function as hybrid script.
The hybrid function support emulation mode and parsing to the internal language IR.
- 返回:
hybrid_func -- A decorated hybrid script function.
- 返回类型:
function
- tvm.te.hybrid.source_to_op(src, args, symbols, closure_vars)[源代码]#
Another level of wrapper
- 参数:
src (ast.node or str) -- If an ast.node, then directly lower it. If a str, then parse it to ast and lower it.
args (list of Tensors or Vars) -- The argument lists to the function. It is NOT encouraged to write a function without arguments. It is NOT encouraged to write a function with side effect.
symbols (list of str) -- The symbol list of the global context of the function.
closure_vars (dict) -- A dict of external name reference captured by this function.
- 返回:
res -- The result of output tensors of the formed OpNode.
- 返回类型:
list of output tensors