tvm.ir#
Common data structures across all IR variants.
Classes:
Array container of TVM. |
|
Attribute node, which is mainly use for defining attributes of operators. |
|
Base class of all the expressions. |
|
Base class of all functions. |
|
|
Possible kinds of calling conventions. |
Dictionary attributes. |
|
Environment function. |
|
|
Function type. |
Base node for all global info that can appear in the IR |
|
|
A global variable in the IR. |
|
IRModule that holds functions and type definitions. |
Map container of TVM. |
|
Base class of all IR Nodes. |
|
|
Primitive operator in the IR. |
|
PointerType used in the low-level TIR. |
Base class of all primitive expressions. |
|
|
Primitive data type in the low level IR |
|
Represent a range in TVM. |
Base class of all non-primitive expressions. |
|
|
A sequence of source spans |
|
A identifier for a source location. |
|
Specifies a location in a source program. |
|
The type of tuple values. |
The base class of all types. |
|
|
Functions:
|
Assert lhs and rhs are structurally equal to each other. |
|
Load tvm object from json_str. |
|
Make a new IR node by its type key and fields |
|
Register Op lowering function |
|
Register an operator property of an operator by name. |
|
Save tvm object as json string. |
|
Check structural equality of lhs and rhs. |
|
Compute structural hash of node |
- class tvm.ir.Array[源代码]#
Array container of TVM.
You do not need to create Array explicitly. Normally python list and tuple will be converted automatically to Array during tvm function call. You may get Array in return values of TVM function call.
- class tvm.ir.Attrs[源代码]#
Attribute node, which is mainly use for defining attributes of operators.
Used by function registered in python side, such as compute, schedule and alter_layout. Attrs is passed as the first argument to these functions.
Methods:
get_int
(key)Get a python int value of a key
get_int_tuple
(key)Get a python int tuple of a key
get_str
(key)Get a python int value of a key
keys
()Get list of names in the attribute.
Get fields information
- class tvm.ir.BaseFunc[源代码]#
Base class of all functions.
Attributes:
Return the attrs member of the function.
Methods:
with_attr
(attr_key_or_dict[, attr_value])Create a new copy of the function and update the attribute.
with_attrs
(attr_map)Copy the IRModule and add the given attribute map to it.
without_attr
(attr_key)Create a new copy of the function with an attribute without provided key.
- property attrs#
Return the attrs member of the function.
- with_attr(attr_key_or_dict, attr_value=None) BaseFunc [源代码]#
Create a new copy of the function and update the attribute.
- 参数:
attr_key_or_dict (Union[str, dict]) -- The attribute key to use or a dict containing multiple key value pairs.
attr_value (Object) -- The new attribute value.
- 返回:
func -- A new copy of the function
- 返回类型:
- class tvm.ir.EnvFunc[源代码]#
Environment function.
This is a global function object that can be serialized by its name.
Methods:
get
(name)Get a static env function
- class tvm.ir.FuncType(arg_types, ret_type)[源代码]#
Function type.
A function type consists of a list of type parameters to enable the definition of generic functions, a set of type constraints which we omit for the time being, a sequence of argument types, and a return type.
- 参数:
arg_types (List[tvm.ir.Type]) -- The argument types
ret_type (tvm.ir.Type) -- The return type.
- class tvm.ir.GlobalInfo[源代码]#
Base node for all global info that can appear in the IR
Methods:
same_as
(other)Overload with structural equality.
- class tvm.ir.GlobalVar(name_hint: str, type_annot: Type | None = None)[源代码]#
A global variable in the IR.
GlobalVar is used to refer to the global functions stored in the IRModule.
- 参数:
name_hint (str) -- The name of the variable.
- class tvm.ir.IRModule(functions=None, attrs=None, global_infos=None)[源代码]#
IRModule that holds functions and type definitions.
IRModule is the basic unit for all IR transformations across the stack.
- 参数:
functions (Optional[dict].) -- Map of global var to BaseFunc
Methods:
from_expr
(expr[, functions])Construct a module from a standalone expression.
Get items in self.functions.items() in alphabetical order.
get_attr
(attr_key)Get the IRModule attribute.
get_global_var
(name)Get a global variable in the function by name.
Collect all global vars defined in this module.
replace_global_vars
(replacements)Replace GlobalVar instances within the module
update
(other)Insert functions in another Module to current one.
update_func
(var, func)Update the function corresponding to a global variable in the module.
update_global_info
(name, global_info)Update global info in the module
with_attr
(attr_key, attr_value)Copy the IRModule and add an attribute to it.
with_attrs
(attr_map)Copy the IRModule and add the given attribute map to it.
without_attr
(attr_key)Copy the IRModule and remove an attribute key and its associated value.
- static from_expr(expr, functions=None)[源代码]#
Construct a module from a standalone expression.
- 参数:
expr (RelaxExpr) -- The starting expression
global_funcs (Optional[dict]) -- Map of global vars to function definitions
- 返回:
mod -- A module containing the passed definitions, where expr is set as the entry point (wrapped in a function if necessary)
- 返回类型:
Module
- get_attr(attr_key)[源代码]#
Get the IRModule attribute.
- 参数:
attr_key (str) -- The attribute key.
- 返回:
attr_value -- Attribute value
- 返回类型:
Any
- get_global_var(name)[源代码]#
Get a global variable in the function by name.
- 参数:
name (str) -- The name of the global variable.
- 返回:
global_var -- The global variable mapped to
name
.- 返回类型:
- 抛出:
tvm.error.TVMError if we cannot find corresponding global var. --
- replace_global_vars(replacements: Dict[str | GlobalVar, str | GlobalVar]) IRModule [源代码]#
Replace GlobalVar instances within the module
Replace GlobalVars within the IRModule. Since the IRModule may contain internal references to a GlobalVar, either in TIR or in Relax, this method should be used whenever replacing or renaming a GlobalVar.
- 参数:
replacements (Dict[Union[str, _expr.GlobalVar], Union[str, _expr.GlobalVar]]) -- A dictionary where each key is a GlobalVar to be replaced, and the corresponding value is the GlobalVar with which to replace it.
- 返回:
The updated module
- 返回类型:
- update(other)[源代码]#
Insert functions in another Module to current one.
- 参数:
other (IRModule) -- The module to merge into the current Module.
- update_func(var, func)[源代码]#
Update the function corresponding to a global variable in the module.
- 参数:
var (GlobalVar) -- The global variable.
func (tvm.ir.BaseFunc) -- The function to be inserted.
- update_global_info(name, global_info)[源代码]#
Update global info in the module
- 参数:
name (str) -- The name for the global info.
global_info (List[GlobalInfo]) -- The global info to be updated.
- with_attr(attr_key, attr_value)[源代码]#
Copy the IRModule and add an attribute to it.
- 参数:
attr_key (str) -- The attribute key.
attr_value (Object) -- The new attribute value.
- 返回:
mod -- A new copy of the IRModule with the attribute
- 返回类型:
- class tvm.ir.Map[源代码]#
Map container of TVM.
You do not need to create Map explicitly. Normally python dict will be converted automatically to Map during tvm function call. You can use convert to create a dict[Object-> Object] into a Map
Methods:
- class tvm.ir.Op[源代码]#
Primitive operator in the IR.
Methods:
add_argument
(name, type, description)Add arguments information to the function.
get
(op_name)Get the Op for a given name
get_attr
(attr_name)Get additional attribute about the operator.
has_attr
(attr_name)Check whether the operator has additional attribute.
List all the op names in the op registry.
reset_attr
(attr_name)Reset attribute about the operator.
set_attr
(attr_name, value[, plevel])Set attribute about the operator.
set_attrs_type_key
(key)Set the attribute type key of op.
Set the support level of op.
set_support_level
(level)Set the support level of op.
- add_argument(name, type, description)[源代码]#
Add arguments information to the function.
- 参数:
name (str) -- The argument name.
type (str) -- The argument type.
description (str) -- The argument description.
- static get(op_name)[源代码]#
Get the Op for a given name
- 参数:
op_name (str) -- The operator name
- 返回:
op -- The op of the corresponding name
- 返回类型:
- get_attr(attr_name)[源代码]#
Get additional attribute about the operator.
- 参数:
attr_name (str) -- The attribute name.
- 返回:
value -- The attribute value
- 返回类型:
object
- has_attr(attr_name)[源代码]#
Check whether the operator has additional attribute.
- 参数:
attr_name (str) -- The attribute name.
- 返回:
value -- Whether the operator has additional attribute
- 返回类型:
bool
- static list_op_names()[源代码]#
List all the op names in the op registry.
- 返回:
value -- The registered op names
- 返回类型:
List[str]
- reset_attr(attr_name)[源代码]#
Reset attribute about the operator.
- 参数:
attr_name (str) -- The attribute name
- class tvm.ir.PointerType(element_type, storage_scope='')[源代码]#
PointerType used in the low-level TIR.
- 参数:
element_type (tvm.ir.Type) -- The type of pointer's element.
storage_scope (str) -- The storage scope into which the pointer addresses.
- class tvm.ir.PrimExpr[源代码]#
Base class of all primitive expressions.
PrimExpr is used in the low-level code optimizations and integer analysis.
- class tvm.ir.PrimType(dtype)[源代码]#
Primitive data type in the low level IR
- 参数:
dtype (str) -- The runtime data type relates to the primtype.
- class tvm.ir.Range(begin: PrimExpr, end: PrimExpr | None = None, span: Span | None = None)[源代码]#
Represent a range in TVM.
You do not need to create a Range explicitly. Python lists and tuples will be converted automatically to a Range in API functions.
- 参数:
备注
The constructor creates the range [begin, end) if the end argument is not None. Otherwise, it creates [0, begin).
Methods:
from_min_extent
(min_value, extent[, span])Construct a Range by min and extent.
- class tvm.ir.RelaxExpr[源代码]#
Base class of all non-primitive expressions.
Attributes:
Get the checked type of tvm.relax.Expr.
Get the struct info field
- property checked_type#
Get the checked type of tvm.relax.Expr.
- 返回:
checked_type -- The checked type.
- 返回类型:
- property struct_info: StructInfo | None#
Get the struct info field
- 返回:
struct_info -- The struct info if available.
- 返回类型:
- class tvm.ir.SequentialSpan(spans)[源代码]#
A sequence of source spans
This span is specific for an expression, which is from multiple expressions after an IR transform.
- 参数:
spans (Array) -- The array of spans.
- class tvm.ir.SourceName(name)[源代码]#
A identifier for a source location.
- 参数:
name (str) -- The name of the source.
- class tvm.ir.Span(source_name, line, end_line, column, end_column)[源代码]#
Specifies a location in a source program.
- 参数:
source (SourceName) -- The source name.
lineno (int) -- The line number.
col_offset (int) -- The column offset of the location.
- class tvm.ir.TupleType(fields)[源代码]#
The type of tuple values.
- 参数:
fields (List[Type]) -- The fields in the tuple
- class tvm.ir.Type[源代码]#
The base class of all types.
Methods:
same_as
(other)Compares two TVM types by referential equality.
- tvm.ir.assert_structural_equal(lhs, rhs, map_free_vars=False)[源代码]#
Assert lhs and rhs are structurally equal to each other.
- 参数:
lhs (Object) -- The left operand.
rhs (Object) -- The left operand.
map_free_vars (bool) -- Whether or not shall we map free vars that does not bound to any definitions as equal to each other.
:raises ValueError : if assertion does not hold.:
- tvm.ir.load_json(json_str) Object [源代码]#
Load tvm object from json_str.
- 参数:
json_str (str) -- The json string
- 返回:
node -- The loaded tvm node.
- 返回类型:
Object
- tvm.ir.make_node(type_key, **kwargs)[源代码]#
Make a new IR node by its type key and fields
- 参数:
type_key (str) -- The type key of the node.
**kwargs (dict) -- The fields of the node.
- 返回:
node -- The corresponding IR Node
- 返回类型:
备注
If the created node is instance of AttrsNode, then the creator function will also run bound checks and default value setup as supported by Attrs.
示例
The following code constructs a IntImm object
x = tvm.ir.make_node("IntImm", dtype="int32", value=10, span=None) assert isinstance(x, tvm.tir.IntImm) assert x.value == 10
- tvm.ir.register_intrin_lowering(op_name, target, *, f=None, level=10)[源代码]#
Register Op lowering function
- 参数:
op_name (str) -- The op name
target (str) -- The target string for given intrinsic lowering function
f (function, optional) -- The function to be registered.
level (int) -- The priority level
- 返回:
fregister -- Register op lowering function if f is not specified.
- 返回类型:
function
- tvm.ir.register_op_attr(op_name, attr_key, value=None, level=10)[源代码]#
Register an operator property of an operator by name.
- 参数:
op_name (str) -- The name of operator
attr_key (str) -- The attribute name.
value (object, optional) -- The value to set
level (int, optional) -- The priority level
- 返回:
fregister -- Register function if value is not specified.
- 返回类型:
function
- tvm.ir.save_json(node) str [源代码]#
Save tvm object as json string.
- 参数:
node (Object) -- A TVM object to be saved.
- 返回:
json_str -- Saved json string.
- 返回类型:
str
- tvm.ir.structural_equal(lhs, rhs, map_free_vars=False)[源代码]#
Check structural equality of lhs and rhs.
The structural equality is recursively defined in the DAG of IRNodes. There are two kinds of nodes:
Graph node: a graph node in lhs can only be mapped as equal to one and only one graph node in rhs.
Normal node: equality is recursively defined without the restriction of graph nodes.
Vars(tir::Var, relax::Var) are graph nodes.
A var-type node(e.g. tir::Var) can be mapped as equal to another var with the same type if one of the following condition holds:
They appear in a same definition point(e.g. function argument).
They points to the same VarNode via the same_as relation.
They appear in a same usage point, and map_free_vars is set to be True.
The rules for var are used to remap variables occurs in function arguments and let-bindings.
- 参数:
lhs (Object) -- The left operand.
rhs (Object) -- The left operand.
map_free_vars (bool) -- Whether free variables (i.e. variables without a definition site) should be mapped as equal to each other.
- 返回:
result -- The comparison result.
- 返回类型:
bool
参见
structural_hash
,assert_strucural_equal
- tvm.ir.structural_hash(node, map_free_vars=False)[源代码]#
Compute structural hash of node
The structural hash value is recursively defined in the DAG of IRNodes. There are two kinds of nodes:
Normal node: the hash value is defined by its content and type only.
Graph node: each graph node will be assigned a unique index ordered by the first occurence during the visit. The hash value of a graph node is combined from the hash values of its contents and the index.
structural_hash is made to be concistent with structural_equal. If two nodes are structurally equal to each other, then their structural hash (with the same map_free_vars option) should be equal to each other as well.
If the structural hash of two nodes equals to each other, then it is highly likely(except for rare hash value collison cases) that the two nodes are structurally equal to each other.
- 参数:
node (Object) -- The input to be hashed.
map_free_vars (bool) -- If map_free_vars is set to true, we will hash free variables by the order of their occurrences. Otherwise, we will hash by their in-memory pointer address.
- 返回:
result -- The hash result
- 返回类型:
int
参见
structrual_equal