tvm.contrib.graph_executor#
Minimum graph executor that executes graph containing TVM PackedFunc.
- class tvm.contrib.graph_executor.GraphModule(module)[源代码]#
Wrapper runtime module.
This is a thin wrapper of the underlying TVM module. you can also directly call set_input, run, and get_output of underlying module functions
Parameters#
- moduletvm.runtime.Module
The internal tvm module that holds the actual graph functions.
Attributes#
- moduletvm.runtime.Module
The internal tvm module that holds the actual graph functions.
Examples#
import tvm from tvm import relay from tvm.contrib import graph_executor # build the library using graph executor lib = relay.build(...) lib.export_library("compiled_lib.so") # load it back as a runtime lib: tvm.runtime.Module = tvm.runtime.load_module("compiled_lib.so") # Call the library factory function for default and create # a new runtime.Module, wrap with graph module. gmod = graph_executor.GraphModule(lib["default"](dev)) # use the graph module. gmod.set_input("x", data) gmod.run()
- benchmark(device, func_name='run', repeat=5, number=5, min_repeat_ms=None, limit_zero_time_iterations=100, end_to_end=False, cooldown_interval_ms=0, repeats_to_cooldown=1, **kwargs)[源代码]#
Calculate runtime of a function by repeatedly calling it.
Use this function to get an accurate measurement of the runtime of a function. The function is run multiple times in order to account for variability in measurements, processor speed or other external factors. Mean, median, standard deviation, min and max runtime are all reported. On GPUs, CUDA and ROCm specifically, special on-device timers are used so that synchonization and data transfer operations are not counted towards the runtime. This allows for fair comparison of runtimes across different functions and models. The end_to_end flag switches this behavior to include data transfer operations in the runtime.
The benchmarking loop looks approximately like so:
for r in range(repeat): time_start = now() for n in range(number): func_name() time_end = now() total_times.append((time_end - time_start)/number)
Parameters#
- func_namestr
The function to benchmark. This is ignored if end_to_end is true.
- repeatint
Number of times to run the outer loop of the timing code (see above). The output will contain repeat number of datapoints.
- numberint
Number of times to run the inner loop of the timing code. This inner loop is run in between the timer starting and stopping. In order to amortize any timing overhead, number should be increased when the runtime of the function is small (less than a 1/10 of a millisecond).
- min_repeat_msOptional[int]
If set, the inner loop will be run until it takes longer than min_repeat_ms milliseconds. This can be used to ensure that the function is run enough to get an accurate measurement.
- limit_zero_time_iterationsOptional[int]
The maximum number of repeats when measured time is equal to 0. It helps to avoid hanging during measurements.
- end_to_endbool
If set, include time to transfer input tensors to the device and time to transfer returned tensors in the total runtime. This will give accurate timings for end to end workloads.
- cooldown_interval_ms: Optional[int]
The cooldown interval in milliseconds between the number of repeats defined by repeats_to_cooldown.
- repeats_to_cooldown: Optional[int]
The number of repeats before the cooldown is activated.
- kwargsDict[str, Object]
Named arguments to the function. These are cached before running timing code, so that data transfer costs are not counted in the runtime.
Returns#
- timing_resultsBenchmarkResult
Runtimes of the function. Use .mean to access the mean runtime, use .results to access the individual runtimes (in seconds).
- debug_get_output(node, out)[源代码]#
Run graph up to node and get the output to out
Parameters#
- nodeint / str
The node index or name
- outNDArray
The output array container
- get_input(index, out=None)[源代码]#
Get index-th input to out
Parameters#
- indexint
The input index
- outNDArray
The output array container
- get_input_index(name)[源代码]#
Get inputs index via input name.
Parameters#
- namestr
The input key name
Returns#
- index: int
The input index. -1 will be returned if the given input name is not found.
- get_input_info()[源代码]#
Return the 'shape' and 'dtype' dictionaries of the graph.
备注
We can't simply get the input tensors from a TVM graph because weight tensors are treated equivalently. Therefore, to find the input tensors we look at the 'arg_nodes' in the graph (which are either weights or inputs) and check which ones don't appear in the params (where the weights are stored). These nodes are therefore inferred to be input tensors.
Returns#
- shape_dictMap
Shape dictionary - {input_name: tuple}.
- dtype_dictMap
dtype dictionary - {input_name: dtype}.
- get_num_outputs()[源代码]#
Get the number of outputs from the graph
Returns#
- countint
The number of outputs.
- get_output(index, out=None)[源代码]#
Get index-th output to out
Parameters#
- indexint
The output index
- outNDArray
The output array container
- load_params(params_bytes)[源代码]#
Load parameters from serialized byte array of parameter dict.
Parameters#
- params_bytesbytearray
The serialized parameter dict.
- run(**input_dict)[源代码]#
Run forward execution of the graph
Parameters#
- input_dict: dict of str to NDArray
List of input values to be feed to
- set_input(key=None, value=None, **params)[源代码]#
Set inputs to the module via kwargs
Parameters#
- keyint or str
The input key
- valuethe input value.
The input value
- paramsdict of str to NDArray
Additional arguments
- set_input_zero_copy(key=None, value=None, **params)[源代码]#
Set inputs to the module via kwargs with zero memory copy
Parameters#
- keyint or str
The input key
- valuethe input value in DLPack
The input value
- paramsdict of str to NDArray
Additional arguments
- set_output_zero_copy(key, value)[源代码]#
Set outputs to the module with zero memory copy
Parameters#
- keyint or str
The output key
- valuethe output value in DLPack
The output value
Share parameters from pre-existing GraphExecutor instance.
Parameters#
- other: GraphExecutor
The parent GraphExecutor from which this instance should share it's parameters.
- params_bytesbytearray
The serialized parameter dict (used only for the parameter names).
- tvm.contrib.graph_executor.create(graph_json_str, libmod, device)[源代码]#
Create a runtime executor module given a graph and module.
Parameters#
- graph_json_strstr
The graph to be deployed in json format output by json graph. The graph can contain operator(tvm_op) that points to the name of PackedFunc in the libmod.
- libmodtvm.runtime.Module
The module of the corresponding function
- deviceDevice or list of Device
The device to deploy the module. It can be local or remote when there is only one Device. Otherwise, the first device in the list will be used as this purpose. All device should be given for heterogeneous execution.
Returns#
- graph_moduleGraphModule
Runtime graph module that can be used to execute the graph.
Note#
See also
tvm.contrib.graph_executor.GraphModule
for examples to directly construct a GraphModule from an exported relay compiled library.
- tvm.contrib.graph_executor.get_device(libmod, device)[源代码]#
Parse and validate all the device(s).
Parameters#
- libmodtvm.runtime.Module
The module of the corresponding function
device : Device or list of Device
Returns#
device : list of Device num_rpc_dev : Number of rpc devices device_type_id : List of device type and device id