tvm.te.tensor 源代码
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Tensor class for computation declaration."""
# pylint: disable=invalid-name
import tvm._ffi
from tvm.runtime import Object, ObjectGeneric, convert_to_object
from tvm.tir import expr as _expr, DataProducer
from . import _ffi_api
[文档]
class TensorSlice(ObjectGeneric, _expr.ExprOp):
"""Auxiliary data structure for enable slicing syntax from tensor."""
def __init__(self, tensor, indices):
if not isinstance(indices, tuple):
indices = (indices,)
self.tensor = tensor
self.indices = indices
def __getitem__(self, indices):
if not isinstance(indices, tuple):
indices = (indices,)
return TensorSlice(self.tensor, self.indices + indices)
[文档]
def asobject(self):
"""Convert slice to object."""
return self.tensor.__call__(*self.indices)
@property
def dtype(self):
"""Data content of the tensor."""
return self.tensor.dtype
@tvm._ffi.register_object
class TensorIntrinCall(Object):
"""Intermediate structure for calling a tensor intrinsic."""
[文档]
@tvm._ffi.register_object
class Tensor(DataProducer, _expr.ExprOp):
"""Tensor object, to construct, see function.Tensor"""
def __call__(self, *indices):
ndim = self.ndim
if len(indices) != ndim:
raise ValueError(
f"Need to provide {ndim} index in tensor but {len(indices)} was provided"
)
indices = convert_to_object(indices)
return _expr.ProducerLoad(self, indices)
def __getitem__(self, indices):
return TensorSlice(self, indices)
def __hash__(self):
return _ffi_api.TensorHash(self)
def __eq__(self, other):
if not isinstance(other, Tensor):
if isinstance(other, _expr.ExprOp):
return _expr.EqualOp(self, other)
return False
if self.ndim == 0 and other.ndim == 0:
raise ValueError(
"Equal == comparison among rank-0 tensor is ambiguous, "
"use Tensor.equal for content expression equvalence, "
"use Tensor.same_as for exact reference comparison"
)
return _ffi_api.TensorEqual(self, other)
@property
def ndim(self):
"""Dimension of the tensor."""
return len(self.shape)
@property
def axis(self):
"""Axis of the tensor."""
return self.__getattr__("axis")
@property
def op(self):
"""The corressponding :py:class:`Operation`."""
return self.__getattr__("op")
@property
def value_index(self):
"""The output value index the tensor corresponds to."""
return self.__getattr__("value_index")
@property
def shape(self):
"""The output shape of the tensor."""
return self.__getattr__("shape")
@property
def name(self):
op = self.op
if op.num_outputs == 1:
return op.name
return f"{op.name}.v{self.value_index}"
class Operation(Object):
"""Represent an operation that generates a tensor"""
def output(self, index):
"""Get the index-th output of the operation
Parameters
----------
index : int
The index size.
Returns
-------
out : Tensor
The i-th output.
"""
return _ffi_api.OpGetOutput(self, index)
@property
def num_outputs(self):
"""Number of outputs from this op."""
return _ffi_api.OpNumOutputs(self)
@property
def input_tensors(self):
"""List of input tensors to this op."""
return _ffi_api.OpInputTensors(self)
[文档]
@tvm._ffi.register_object
class PlaceholderOp(Operation):
"""Placeholder operation."""
@tvm._ffi.register_object
class BaseComputeOp(Operation):
"""Compute operation."""
@property
def axis(self):
"""Represent the IterVar axis, defined when it is a ComputeOp"""
return self.__getattr__("axis")
@property
def reduce_axis(self):
"""Represent axis of reductions, only defined when it is a ComputeOp"""
return self.__getattr__("reduce_axis")
[文档]
@tvm._ffi.register_object
class ComputeOp(BaseComputeOp):
"""Scalar operation."""
[文档]
@tvm._ffi.register_object
class TensorComputeOp(BaseComputeOp):
"""Tensor operation."""
[文档]
@tvm._ffi.register_object
class ScanOp(Operation):
"""Scan operation."""
@property
def scan_axis(self):
"""Represent the scan axis, only defined when it is a ScanOp"""
return self.__getattr__("scan_axis")
[文档]
@tvm._ffi.register_object
class ExternOp(Operation):
"""External operation."""
[文档]
@tvm._ffi.register_object
class HybridOp(Operation):
"""Hybrid operation."""
@property
def axis(self):
"""Represent the IterVar axis, also defined when it is a HybridOp"""
return self.__getattr__("axis")