def @main(%data: Tensor[(1, 3, 299, 299), float32] /* ty=Tensor[(1, 3, 299, 299), float32] span=Conv__435.data:0:0 */) -> Tensor[(1, 1001), float32] {
%0 = @vta_special.conv2d_bias_0(%data, meta[relay.Constant][0] /* ty=Tensor[(64, 3, 7, 7), float32] span=Conv__435.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/conv1/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 64, 150, 150), float32] */;
%1 = nn.max_pool2d(%0, pool_size=[3, 3], strides=[2, 2], padding=[0, 0, 1, 1]) /* ty=Tensor[(1, 64, 75, 75), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/pool1/MaxPool:0:0 */;
%2 = @vta_special.elwise_1(%1, meta[relay.Constant][1] /* ty=Tensor[(64, 1, 1), float32] */) /* ty=Tensor[(1, 64, 75, 75), float32] */;
%3 = @vta_special.conv2d_bias_3(%2, meta[relay.Constant][3] /* ty=Tensor[(64, 64, 1, 1), float32] */) /* ty=Tensor[(1, 64, 75, 75), float32] */;
%4 = @vta_special.conv2d_bias_4(%3, meta[relay.Constant][4] /* ty=Tensor[(64, 64, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_1/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_1/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 64, 75, 75), float32] */;
%5 = @vta_special.conv2d_bias_2(%2, meta[relay.Constant][2] /* ty=Tensor[(256, 64, 1, 1), float32] */) /* ty=Tensor[(1, 256, 75, 75), float32] */;
%6 = @vta_special.conv2d_bias_5(%4, meta[relay.Constant][5] /* ty=Tensor[(256, 64, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_1/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_1/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 256, 75, 75), float32] */;
%7 = @vta_special.elwise_6(%5, %6) /* ty=Tensor[(1, 256, 75, 75), float32] */;
%8 = @vta_special.elwise_7(%7, meta[relay.Constant][6] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 75, 75), float32] */;
%9 = @vta_special.conv2d_bias_8(%8, meta[relay.Constant][7] /* ty=Tensor[(64, 256, 1, 1), float32] */) /* ty=Tensor[(1, 64, 75, 75), float32] */;
%10 = @vta_special.conv2d_bias_9(%9, meta[relay.Constant][8] /* ty=Tensor[(64, 64, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_2/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_2/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 64, 75, 75), float32] */;
%11 = @vta_special.conv2d_bias_10(%10, meta[relay.Constant][9] /* ty=Tensor[(256, 64, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_2/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_2/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 256, 75, 75), float32] */;
%12 = @vta_special.elwise_11(%7, %11) /* ty=Tensor[(1, 256, 75, 75), float32] */;
%13 = @vta_special.elwise_12(%12, meta[relay.Constant][10] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 75, 75), float32] */;
%14 = @vta_special.conv2d_bias_13(%13, meta[relay.Constant][11] /* ty=Tensor[(64, 256, 1, 1), float32] */) /* ty=Tensor[(1, 64, 75, 75), float32] */;
%15 = @vta_special.conv2d_bias_14(%14, meta[relay.Constant][12] /* ty=Tensor[(64, 64, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_3/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_3/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 64, 38, 38), float32] */;
%16 = nn.max_pool2d(%12, pool_size=[1, 1], strides=[2, 2], padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 256, 38, 38), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_3/bottleneck_v2/shortcut/MaxPool:0:0 */;
%17 = @vta_special.conv2d_bias_15(%15, meta[relay.Constant][13] /* ty=Tensor[(256, 64, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_3/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block1/unit_3/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 256, 38, 38), float32] */;
%18 = @vta_special.elwise_16(%16, %17) /* ty=Tensor[(1, 256, 38, 38), float32] */;
%19 = @vta_special.elwise_17(%18, meta[relay.Constant][14] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 38, 38), float32] */;
%20 = @vta_special.conv2d_bias_19(%19, meta[relay.Constant][16] /* ty=Tensor[(128, 256, 1, 1), float32] */) /* ty=Tensor[(1, 128, 38, 38), float32] */;
%21 = @vta_special.conv2d_bias_20(%20, meta[relay.Constant][17] /* ty=Tensor[(128, 128, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_1/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_1/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 128, 38, 38), float32] */;
%22 = @vta_special.conv2d_bias_18(%19, meta[relay.Constant][15] /* ty=Tensor[(512, 256, 1, 1), float32] */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%23 = @vta_special.conv2d_bias_21(%21, meta[relay.Constant][18] /* ty=Tensor[(512, 128, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_1/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_1/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%24 = @vta_special.elwise_22(%22, %23) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%25 = @vta_special.elwise_23(%24, meta[relay.Constant][19] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%26 = @vta_special.conv2d_bias_24(%25, meta[relay.Constant][20] /* ty=Tensor[(128, 512, 1, 1), float32] */) /* ty=Tensor[(1, 128, 38, 38), float32] */;
%27 = @vta_special.conv2d_bias_25(%26, meta[relay.Constant][21] /* ty=Tensor[(128, 128, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_2/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_2/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 128, 38, 38), float32] */;
%28 = @vta_special.conv2d_bias_26(%27, meta[relay.Constant][22] /* ty=Tensor[(512, 128, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_2/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_2/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%29 = @vta_special.elwise_27(%24, %28) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%30 = @vta_special.elwise_28(%29, meta[relay.Constant][23] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%31 = @vta_special.elwise_29(%30, meta[relay.Constant][24] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%32 = @vta_special.conv2d_bias_30(%31, meta[relay.Constant][25] /* ty=Tensor[(128, 512, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_3/bottleneck_v2/conv1/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_3/bottleneck_v2/conv1/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 128, 38, 38), float32] */;
%33 = @vta_special.conv2d_bias_31(%32, meta[relay.Constant][26] /* ty=Tensor[(128, 128, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_3/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_3/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 128, 38, 38), float32] */;
%34 = @vta_special.conv2d_bias_32(%33, meta[relay.Constant][27] /* ty=Tensor[(512, 128, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_3/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_3/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%35 = @vta_special.elwise_33(%29, %34) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%36 = @vta_special.elwise_34(%35, meta[relay.Constant][28] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%37 = @vta_special.elwise_35(%36, meta[relay.Constant][29] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 38, 38), float32] */;
%38 = @vta_special.conv2d_bias_36(%37, meta[relay.Constant][30] /* ty=Tensor[(128, 512, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_4/bottleneck_v2/conv1/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_4/bottleneck_v2/conv1/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 128, 38, 38), float32] */;
%39 = @vta_special.conv2d_bias_37(%38, meta[relay.Constant][31] /* ty=Tensor[(128, 128, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_4/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_4/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 128, 19, 19), float32] */;
%40 = nn.max_pool2d(%35, pool_size=[1, 1], strides=[2, 2], padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 512, 19, 19), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_4/bottleneck_v2/shortcut/MaxPool:0:0 */;
%41 = @vta_special.conv2d_bias_38(%39, meta[relay.Constant][32] /* ty=Tensor[(512, 128, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_4/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block2/unit_4/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 512, 19, 19), float32] */;
%42 = @vta_special.elwise_39(%40, %41) /* ty=Tensor[(1, 512, 19, 19), float32] */;
%43 = @vta_special.elwise_40(%42, meta[relay.Constant][33] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 19, 19), float32] */;
%44 = @vta_special.conv2d_bias_42(%43, meta[relay.Constant][35] /* ty=Tensor[(256, 512, 1, 1), float32] */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%45 = @vta_special.conv2d_bias_43(%44, meta[relay.Constant][36] /* ty=Tensor[(256, 256, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_1/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_1/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%46 = @vta_special.conv2d_bias_41(%43, meta[relay.Constant][34] /* ty=Tensor[(1024, 512, 1, 1), float32] */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%47 = @vta_special.conv2d_bias_44(%45, meta[relay.Constant][37] /* ty=Tensor[(1024, 256, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_1/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_1/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%48 = @vta_special.elwise_45(%46, %47) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%49 = @vta_special.elwise_46(%48, meta[relay.Constant][38] /* ty=Tensor[(1024, 1, 1), float32] */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%50 = @vta_special.conv2d_bias_47(%49, meta[relay.Constant][39] /* ty=Tensor[(256, 1024, 1, 1), float32] */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%51 = @vta_special.conv2d_bias_48(%50, meta[relay.Constant][40] /* ty=Tensor[(256, 256, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_2/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_2/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%52 = @vta_special.conv2d_bias_49(%51, meta[relay.Constant][41] /* ty=Tensor[(1024, 256, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_2/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_2/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%53 = @vta_special.elwise_50(%48, %52) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%54 = @vta_special.elwise_51(%53, meta[relay.Constant][42] /* ty=Tensor[(1024, 1, 1), float32] */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%55 = @vta_special.conv2d_bias_52(%54, meta[relay.Constant][43] /* ty=Tensor[(256, 1024, 1, 1), float32] */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%56 = @vta_special.conv2d_bias_53(%55, meta[relay.Constant][44] /* ty=Tensor[(256, 256, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_3/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_3/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%57 = @vta_special.conv2d_bias_54(%56, meta[relay.Constant][45] /* ty=Tensor[(1024, 256, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_3/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_3/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%58 = @vta_special.elwise_55(%53, %57) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%59 = @vta_special.elwise_56(%58, meta[relay.Constant][46] /* ty=Tensor[(1024, 1, 1), float32] */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%60 = @vta_special.conv2d_bias_57(%59, meta[relay.Constant][47] /* ty=Tensor[(256, 1024, 1, 1), float32] */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%61 = @vta_special.conv2d_bias_58(%60, meta[relay.Constant][48] /* ty=Tensor[(256, 256, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_4/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_4/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%62 = @vta_special.conv2d_bias_59(%61, meta[relay.Constant][49] /* ty=Tensor[(1024, 256, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_4/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_4/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%63 = @vta_special.elwise_60(%58, %62) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%64 = @vta_special.elwise_61(%63, meta[relay.Constant][50] /* ty=Tensor[(1024, 1, 1), float32] */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%65 = @vta_special.conv2d_bias_62(%64, meta[relay.Constant][51] /* ty=Tensor[(256, 1024, 1, 1), float32] */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%66 = @vta_special.conv2d_bias_63(%65, meta[relay.Constant][52] /* ty=Tensor[(256, 256, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_5/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_5/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%67 = @vta_special.conv2d_bias_64(%66, meta[relay.Constant][53] /* ty=Tensor[(1024, 256, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_5/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_5/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%68 = @vta_special.elwise_65(%63, %67) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%69 = @vta_special.elwise_66(%68, meta[relay.Constant][54] /* ty=Tensor[(1024, 1, 1), float32] */) /* ty=Tensor[(1, 1024, 19, 19), float32] */;
%70 = @vta_special.conv2d_bias_67(%69, meta[relay.Constant][55] /* ty=Tensor[(256, 1024, 1, 1), float32] */) /* ty=Tensor[(1, 256, 19, 19), float32] */;
%71 = @vta_special.conv2d_bias_68(%70, meta[relay.Constant][56] /* ty=Tensor[(256, 256, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_6/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_6/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 256, 10, 10), float32] */;
%72 = nn.max_pool2d(%68, pool_size=[1, 1], strides=[2, 2], padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 1024, 10, 10), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_6/bottleneck_v2/shortcut/MaxPool:0:0 */;
%73 = @vta_special.conv2d_bias_69(%71, meta[relay.Constant][57] /* ty=Tensor[(1024, 256, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_6/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block3/unit_6/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 1024, 10, 10), float32] */;
%74 = @vta_special.elwise_70(%72, %73) /* ty=Tensor[(1, 1024, 10, 10), float32] */;
%75 = @vta_special.elwise_71(%74, meta[relay.Constant][58] /* ty=Tensor[(1024, 1, 1), float32] */) /* ty=Tensor[(1, 1024, 10, 10), float32] */;
%76 = @vta_special.conv2d_bias_73(%75, meta[relay.Constant][60] /* ty=Tensor[(512, 1024, 1, 1), float32] */) /* ty=Tensor[(1, 512, 10, 10), float32] */;
%77 = @vta_special.conv2d_bias_74(%76, meta[relay.Constant][61] /* ty=Tensor[(512, 512, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_1/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_1/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 512, 10, 10), float32] */;
%78 = @vta_special.conv2d_bias_72(%75, meta[relay.Constant][59] /* ty=Tensor[(2048, 1024, 1, 1), float32] */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%79 = @vta_special.conv2d_bias_75(%77, meta[relay.Constant][62] /* ty=Tensor[(2048, 512, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_1/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_1/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%80 = @vta_special.elwise_76(%78, %79) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%81 = @vta_special.elwise_77(%80, meta[relay.Constant][63] /* ty=Tensor[(2048, 1, 1), float32] */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%82 = @vta_special.conv2d_bias_78(%81, meta[relay.Constant][64] /* ty=Tensor[(512, 2048, 1, 1), float32] */) /* ty=Tensor[(1, 512, 10, 10), float32] */;
%83 = @vta_special.conv2d_bias_79(%82, meta[relay.Constant][65] /* ty=Tensor[(512, 512, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_2/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_2/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 512, 10, 10), float32] */;
%84 = @vta_special.conv2d_bias_80(%83, meta[relay.Constant][66] /* ty=Tensor[(2048, 512, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_2/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_2/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%85 = @vta_special.elwise_81(%80, %84) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%86 = @vta_special.elwise_82(%85, meta[relay.Constant][67] /* ty=Tensor[(2048, 1, 1), float32] */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%87 = @vta_special.conv2d_bias_83(%86, meta[relay.Constant][68] /* ty=Tensor[(512, 2048, 1, 1), float32] */) /* ty=Tensor[(1, 512, 10, 10), float32] */;
%88 = @vta_special.conv2d_bias_84(%87, meta[relay.Constant][69] /* ty=Tensor[(512, 512, 3, 3), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_3/bottleneck_v2/conv2/Conv2D.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_3/bottleneck_v2/conv2/Conv2D_weights_fused_bn:0:0 */) /* ty=Tensor[(1, 512, 10, 10), float32] */;
%89 = @vta_special.conv2d_bias_85(%88, meta[relay.Constant][70] /* ty=Tensor[(2048, 512, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_3/bottleneck_v2/conv3/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/block4/unit_3/bottleneck_v2/conv3/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%90 = @vta_special.elwise_86(%85, %89) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%91 = @vta_special.elwise_87(%90, meta[relay.Constant][71] /* ty=Tensor[(2048, 1, 1), float32] */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%92 = @vta_special.elwise_88(%91, meta[relay.Constant][72] /* ty=Tensor[(2048, 1, 1), float32] */) /* ty=Tensor[(1, 2048, 10, 10), float32] */;
%93 = nn.global_avg_pool2d(%92) /* ty=Tensor[(1, 2048, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/pool5:0:0 */;
%94 = @vta_special.conv2d_bias_89(%93, meta[relay.Constant][73] /* ty=Tensor[(1001, 2048, 1, 1), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/logits/BiasAdd.resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/logits/Conv2D/ReadVariableOp:0:0:0 */) /* ty=Tensor[(1, 1001, 1, 1), float32] */;
%95 = squeeze(%94, axis=[2, 3]) /* ty=Tensor[(1, 1001), float32] span=resnet_v2_50/StatefulPartitionedCall/resnet_v2_50/SpatialSqueeze:0:0 */;
nn.softmax(%95, axis=1) /* ty=Tensor[(1, 1001), float32] span=resnet_v2_50/StatefulPartitionedCall/Softmax:0:0 */
}