在pytorch中通道最后的内存格式#
什么是通道 Last#
通道 last 存格式是保留内存维度排序中 NCHW 张量的另一种排序方式。通道的最后张量以这样的方式排序,通道成为最密集的维度(也就是存储每个像素的图像)。
例如,NCHW 张量的经典(连续)存储(两张 4x4 图像和 3 个彩色通道)如下所示
通道 last 内存格式对数据的排序不同:
Pytorch 通过利用现有的 stride 结构支持内存格式(并提供与现有模型,包括 eager、JIT 和 TorchScript)的向后兼容性。例如,channellast格式的 10x3x16x16 批处理的跨距为 (768, 1, 48, 3)。
通道 last 的 memory 格式仅对 4D NCHW 张量实现。
Memory 格式 API#
这里是如何转换张量之间的连续和通道的 last memory 格式。
经典的 PyTorch 连续张量:
import torch
N, C, H, W = 10, 3, 32, 32
x = torch.empty(N, C, H, W)
print(x.stride())
(3072, 1024, 32, 1)
算子转换:
x = x.to(memory_format=torch.channels_last)
print(x.shape) # 当 shape 顺序保持不变时
print(x.stride())
torch.Size([10, 3, 32, 32])
(3072, 1, 96, 3)
回到连续存储
x = x.to(memory_format=torch.contiguous_format)
print(x.stride()
Alternative option
x = x.contiguous(memory_format=torch.channels_last)
print(x.stride())
(3072, 1, 96, 3)
检查格式:
print(x.is_contiguous(memory_format=torch.channels_last))
True
There are minor difference between the two APIs to
and
contiguous
. We suggest to stick with to
when explicitly
converting memory format of tensor.
For general cases the two APIs behave the same. However in special
cases for a 4D tensor with size NCHW
when either: C==1
or
H==1 && W==1
, only to
would generate a proper stride to
represent channels last memory format.
This is because in either of the two cases above, the memory format
of a tensor is ambiguous, i.e. a contiguous tensor with size
N1HW
is both contiguous
and channels last in memory storage.
Therefore, they are already considered as is_contiguous
for the given memory format and hence contiguous
call becomes a
no-op and would not update the stride. On the contrary, to
would restride tensor with a meaningful stride on dimensions whose
sizes are 1 in order to properly represent the intended memory
format
special_x = torch.empty(4, 1, 4, 4)
print(special_x.is_contiguous(memory_format=torch.channels_last)) # Ouputs: True
print(special_x.is_contiguous(memory_format=torch.contiguous_format)) # Ouputs: True
Same thing applies to explicit permutation API permute
. In
special case where ambiguity could occur, permute
does not
guarantee to produce a stride that properly carry the intended
memory format. We suggest to use to
with explicit memory format
to avoid unintended behavior.
And a side note that in the extreme case, where three non-batch
dimensions are all equal to 1
(C==1 && H==1 && W==1
),
current implementation cannot mark a tensor as channels last memory
format.
Create as channels last
x = torch.empty(N, C, H, W, memory_format=torch.channels_last)
print(x.stride()) # Ouputs: (3072, 1, 96, 3)
clone
preserves memory format
y = x.clone()
print(y.stride()) # Ouputs: (3072, 1, 96, 3)
to
, cuda
, float
… preserves memory format
if torch.cuda.is_available():
y = x.cuda()
print(y.stride()) # Ouputs: (3072, 1, 96, 3)
empty_like
, *_like
operators preserves memory format
y = torch.empty_like(x)
print(y.stride()) # Ouputs: (3072, 1, 96, 3)
Pointwise operators preserves memory format
z = x + y
print(z.stride()) # Ouputs: (3072, 1, 96, 3)
Conv, Batchnorm modules using cudnn backends support channels last (only works for CudNN >= 7.6). Convolution modules, unlike binary p-wise operator, have channels last as the dominating memory format. IFF all inputs are in contiguous memory format, the operator produces output in contiguous memory format. Otherwise, output wil be in channels last memroy format.
if torch.backends.cudnn.version() >= 7603:
model = torch.nn.Conv2d(8, 4, 3).cuda().half()
model = model.to(memory_format=torch.channels_last) # Module parameters need to be channels last
input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float32, requires_grad=True)
input = input.to(device="cuda", memory_format=torch.channels_last, dtype=torch.float16)
out = model(input)
print(out.is_contiguous(memory_format=torch.channels_last)) # Ouputs: True
When input tensor reaches a operator without channels last support, a permutation should automatically apply in the kernel to restore contiguous on input tensor. This introduces overhead and stops the channels last memory format propagation. Nevertheless, it guarantees correct output.
Performance Gains#
Channels last memory format optimizations are available on both GPU and CPU.
On GPU, the most significant performance gains are observed on NVidia's
hardware with Tensor Cores support running on reduced precision
(torch.float16
).
We were able to archive over 22% perf gains with channels last
comparing to contiguous format, both while utilizing
'AMP (Automated Mixed Precision)' training scripts.
Our scripts uses AMP supplied by NVidia
https://github.com/NVIDIA/apex.
python main_amp.py -a resnet50 --b 200 --workers 16 --opt-level O2 ./data
# opt_level = O2
# keep_batchnorm_fp32 = None <class 'NoneType'>
# loss_scale = None <class 'NoneType'>
# CUDNN VERSION: 7603
# => creating model 'resnet50'
# Selected optimization level O2: FP16 training with FP32 batchnorm and FP32 master weights.
# Defaults for this optimization level are:
# enabled : True
# opt_level : O2
# cast_model_type : torch.float16
# patch_torch_functions : False
# keep_batchnorm_fp32 : True
# master_weights : True
# loss_scale : dynamic
# Processing user overrides (additional kwargs that are not None)...
# After processing overrides, optimization options are:
# enabled : True
# opt_level : O2
# cast_model_type : torch.float16
# patch_torch_functions : False
# keep_batchnorm_fp32 : True
# master_weights : True
# loss_scale : dynamic
# Epoch: [0][10/125] Time 0.866 (0.866) Speed 230.949 (230.949) Loss 0.6735125184 (0.6735) Prec@1 61.000 (61.000) Prec@5 100.000 (100.000)
# Epoch: [0][20/125] Time 0.259 (0.562) Speed 773.481 (355.693) Loss 0.6968704462 (0.6852) Prec@1 55.000 (58.000) Prec@5 100.000 (100.000)
# Epoch: [0][30/125] Time 0.258 (0.461) Speed 775.089 (433.965) Loss 0.7877287269 (0.7194) Prec@1 51.500 (55.833) Prec@5 100.000 (100.000)
# Epoch: [0][40/125] Time 0.259 (0.410) Speed 771.710 (487.281) Loss 0.8285319805 (0.7467) Prec@1 48.500 (54.000) Prec@5 100.000 (100.000)
# Epoch: [0][50/125] Time 0.260 (0.380) Speed 770.090 (525.908) Loss 0.7370464802 (0.7447) Prec@1 56.500 (54.500) Prec@5 100.000 (100.000)
# Epoch: [0][60/125] Time 0.258 (0.360) Speed 775.623 (555.728) Loss 0.7592862844 (0.7472) Prec@1 51.000 (53.917) Prec@5 100.000 (100.000)
# Epoch: [0][70/125] Time 0.258 (0.345) Speed 774.746 (579.115) Loss 1.9698858261 (0.9218) Prec@1 49.500 (53.286) Prec@5 100.000 (100.000)
# Epoch: [0][80/125] Time 0.260 (0.335) Speed 770.324 (597.659) Loss 2.2505953312 (1.0879) Prec@1 50.500 (52.938) Prec@5 100.000 (100.000)
Passing --channels-last true
allows running a model in Channels last format with observed 22% perf gain.
python main_amp.py -a resnet50 --b 200 --workers 16 --opt-level O2 --channels-last true ./data
# opt_level = O2
# keep_batchnorm_fp32 = None <class 'NoneType'>
# loss_scale = None <class 'NoneType'>
#
# CUDNN VERSION: 7603
#
# => creating model 'resnet50'
# Selected optimization level O2: FP16 training with FP32 batchnorm and FP32 master weights.
#
# Defaults for this optimization level are:
# enabled : True
# opt_level : O2
# cast_model_type : torch.float16
# patch_torch_functions : False
# keep_batchnorm_fp32 : True
# master_weights : True
# loss_scale : dynamic
# Processing user overrides (additional kwargs that are not None)...
# After processing overrides, optimization options are:
# enabled : True
# opt_level : O2
# cast_model_type : torch.float16
# patch_torch_functions : False
# keep_batchnorm_fp32 : True
# master_weights : True
# loss_scale : dynamic
#
# Epoch: [0][10/125] Time 0.767 (0.767) Speed 260.785 (260.785) Loss 0.7579724789 (0.7580) Prec@1 53.500 (53.500) Prec@5 100.000 (100.000)
# Epoch: [0][20/125] Time 0.198 (0.482) Speed 1012.135 (414.716) Loss 0.7007197738 (0.7293) Prec@1 49.000 (51.250) Prec@5 100.000 (100.000)
# Epoch: [0][30/125] Time 0.198 (0.387) Speed 1010.977 (516.198) Loss 0.7113101482 (0.7233) Prec@1 55.500 (52.667) Prec@5 100.000 (100.000)
# Epoch: [0][40/125] Time 0.197 (0.340) Speed 1013.023 (588.333) Loss 0.8943189979 (0.7661) Prec@1 54.000 (53.000) Prec@5 100.000 (100.000)
# Epoch: [0][50/125] Time 0.198 (0.312) Speed 1010.541 (641.977) Loss 1.7113249302 (0.9551) Prec@1 51.000 (52.600) Prec@5 100.000 (100.000)
# Epoch: [0][60/125] Time 0.198 (0.293) Speed 1011.163 (683.574) Loss 5.8537774086 (1.7716) Prec@1 50.500 (52.250) Prec@5 100.000 (100.000)
# Epoch: [0][70/125] Time 0.198 (0.279) Speed 1011.453 (716.767) Loss 5.7595844269 (2.3413) Prec@1 46.500 (51.429) Prec@5 100.000 (100.000)
# Epoch: [0][80/125] Time 0.198 (0.269) Speed 1011.827 (743.883) Loss 2.8196096420 (2.4011) Prec@1 47.500 (50.938) Prec@5 100.000 (100.000)
The following list of models has the full support of Channels last and showing 8%-35% perf gains on Volta devices:
alexnet
, mnasnet0_5
, mnasnet0_75
, mnasnet1_0
, mnasnet1_3
, mobilenet_v2
, resnet101
, resnet152
, resnet18
, resnet34
, resnet50
, resnext50_32x4d
, shufflenet_v2_x0_5
, shufflenet_v2_x1_0
, shufflenet_v2_x1_5
, shufflenet_v2_x2_0
, squeezenet1_0
, squeezenet1_1
, vgg11
, vgg11_bn
, vgg13
, vgg13_bn
, vgg16
, vgg16_bn
, vgg19
, vgg19_bn
, wide_resnet101_2
, wide_resnet50_2
The following list of models has the full support of Channels last and showing 26%-76% perf gains on Intel® Xeon® Ice Lake (or newer) CPUs:
alexnet
, densenet121
, densenet161
, densenet169
, googlenet
, inception_v3
, mnasnet0_5
, mnasnet1_0
, resnet101
, resnet152
, resnet18
, resnet34
, resnet50
, resnext101_32x8d
, resnext50_32x4d
, shufflenet_v2_x0_5
, shufflenet_v2_x1_0
, squeezenet1_0
, squeezenet1_1
, vgg11
, vgg11_bn
, vgg13
, vgg13_bn
, vgg16
, vgg16_bn
, vgg19
, vgg19_bn
, wide_resnet101_2
, wide_resnet50_2
Converting existing models#
Channels last support is not limited by existing models, as any model can be converted to channels last and propagate format through the graph as soon as input (or certain weight) is formatted correctly.
# Need to be done once, after model initialization (or load)
model = model.to(memory_format=torch.channels_last) # Replace with your model
# Need to be done for every input
input = input.to(memory_format=torch.channels_last) # Replace with your input
output = model(input)
However, not all operators fully converted to support channels last (usually returning contiguous output instead). In the example posted above, layers that does not support channels last will stop the memory format propagation. In spite of that, as we have converted the model to channels last format, that means each convolution layer, which has its 4 dimensional weight in channels last memory format, will restore channels last memory format and benefit from faster kernels.
But operators that does not support channels last does introduce overhead by permutation. Optionally, you can investigate and identify operators in your model that does not support channels last, if you want to improve the performance of converted model.
That means you need to verify the list of used operators against supported operators list https://github.com/pytorch/pytorch/wiki/Operators-with-Channels-Last-support, or introduce memory format checks into eager execution mode and run your model.
After running the code below, operators will raise an exception if the output of the operator doesn't match the memory format of the input.
def contains_cl(args):
for t in args:
if isinstance(t, torch.Tensor):
if t.is_contiguous(memory_format=torch.channels_last) and not t.is_contiguous():
return True
elif isinstance(t, list) or isinstance(t, tuple):
if contains_cl(list(t)):
return True
return False
def print_inputs(args, indent=""):
for t in args:
if isinstance(t, torch.Tensor):
print(indent, t.stride(), t.shape, t.device, t.dtype)
elif isinstance(t, list) or isinstance(t, tuple):
print(indent, type(t))
print_inputs(list(t), indent=indent + " ")
else:
print(indent, t)
def check_wrapper(fn):
name = fn.__name__
def check_cl(*args, **kwargs):
was_cl = contains_cl(args)
try:
result = fn(*args, **kwargs)
except Exception as e:
print("`{}` inputs are:".format(name))
print_inputs(args)
print("-------------------")
raise e
failed = False
if was_cl:
if isinstance(result, torch.Tensor):
if result.dim() == 4 and not result.is_contiguous(memory_format=torch.channels_last):
print(
"`{}` got channels_last input, but output is not channels_last:".format(name),
result.shape,
result.stride(),
result.device,
result.dtype,
)
failed = True
if failed and True:
print("`{}` inputs are:".format(name))
print_inputs(args)
raise Exception("Operator `{}` lost channels_last property".format(name))
return result
return check_cl
old_attrs = dict()
def attribute(m):
old_attrs[m] = dict()
for i in dir(m):
e = getattr(m, i)
exclude_functions = ["is_cuda", "has_names", "numel", "stride", "Tensor", "is_contiguous", "__class__"]
if i not in exclude_functions and not i.startswith("_") and "__call__" in dir(e):
try:
old_attrs[m][i] = e
setattr(m, i, check_wrapper(e))
except Exception as e:
print(i)
print(e)
attribute(torch.Tensor)
attribute(torch.nn.functional)
attribute(torch)
If you found an operator that doesn't support channels last tensors and you want to contribute, feel free to use following developers guide https://github.com/pytorch/pytorch/wiki/Writing-memory-format-aware-operators.
Code below is to recover the attributes of torch.
for (m, attrs) in old_attrs.items():
for (k, v) in attrs.items():
setattr(m, k, v)
Work to do#
There are still many things to do, such as:
Resolving ambiguity of N1HW and NC11 Tensors;
Testing of Distributed Training support;
Improving operators coverage.
If you have feedback and/or suggestions for improvement, please let us know by creating an issue.