MMEngine 快速上手#

参考:MMEngine 快速上手

构建模型#

首先,需要构建 MMEngine 模型,约定这个模型应当继承 BaseModel,并且其 forward 方法除了接受来自数据集的若干参数外,还需要接受额外的参数 mode:对于训练,需要 mode 接受字符串 "loss",并返回包含 "loss" 字段的字典;对于验证,需要 mode 接受字符串 "predict",并返回同时包含预测信息和真实信息的结果。

import set_env
import torch.nn.functional as F
import torch
from torch import nn
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
    def __init__(self, data_preprocessor: dict|nn.Module|None = None,
                 init_cfg: dict|None = None):
        super().__init__(data_preprocessor=data_preprocessor, init_cfg=init_cfg)
        self.resnet = torchvision.models.resnet50()

    def forward(self, inputs: torch.Tensor,
                data_samples: list|list = None,
                mode: str = 'tensor') -> dict[str, torch.Tensor] | list:
        x = self.resnet(inputs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, data_samples)}
        elif mode == 'predict':
            return x, data_samples
        else:
            return x
/media/pc/data/lxw/envs/anaconda3x/envs/xxx/lib/python3.12/site-packages/mmengine/optim/optimizer/zero_optimizer.py:11: DeprecationWarning: `TorchScript` support for functional optimizers is deprecated and will be removed in a future PyTorch release. Consider using the `torch.compile` optimizer instead.
  from torch.distributed.optim import \

构建数据集和数据加载器#

其次,需要构建训练和验证所需要的数据集 (Dataset)和数据加载器 (DataLoader)。 对于基础的训练和验证功能,可以直接使用符合 PyTorch 标准的数据加载器和数据集。

from pathlib import Path

temp_dir = Path(".temp")
temp_dir.mkdir(exist_ok=True) # 创建缓存目录
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(
    batch_size=32,
    shuffle=True,
    dataset=torchvision.datasets.CIFAR10(
        temp_dir/'data/cifar10',
        train=True,
        download=True,
        transform=transforms.Compose([
            transforms.RandomCrop(32, padding=4),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(**norm_cfg)
        ]))
)
val_dataloader = DataLoader(
    batch_size=32,
    shuffle=False,
    dataset=torchvision.datasets.CIFAR10(
        temp_dir/'data/cifar10',
        train=False,
        download=True,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(**norm_cfg)
        ]))
)
Files already downloaded and verified
Files already downloaded and verified

构建评测指标#

为了进行验证和测试,需要定义模型推理结果的评测指标。

约定评测指标需要继承 BaseMetric,并实现 processcompute_metrics 方法。其中 process 方法接受数据集的输出和模型 mode="predict" 时的输出,此时的数据为单个批次的数据,对这一批次的数据进行处理后,保存信息至 self.results 属性。而 compute_metrics 接受 results 参数,这一参数的输入为 process 中保存的所有信息(如果是分布式环境,results 中为已收集的,包括各个进程 process 保存信息的结果),利用这些信息计算并返回保存有评测指标结果的字典

from typing import Any, Sequence
from mmengine.evaluator import BaseMetric


class Accuracy(BaseMetric):
    def process(self, data_batch: Any, data_samples: Sequence[dict])->None:
        """
        处理一批数据样本及其预测结果。处理后的结果应存储在`self.results`中,这将在所有批次处理完毕后用于计算指标。

        Args:
            data_batch: 从数据加载器获取的一批数据。
            data_samples: 模型输出的一批结果。
        """
        score, gt = data_samples
        # 将一个批次的中间结果保存至 `self.results`
        self.results.append({
            'batch_size': len(gt),
            'correct': (score.argmax(dim=1) == gt).sum().cpu(),
        })

    def compute_metrics(self, results):
        total_correct = sum(item['correct'] for item in results)
        total_size = sum(item['batch_size'] for item in results)
        # 返回保存有评测指标结果的字典,其中键为指标名称
        return dict(accuracy=100 * total_correct / total_size)

构建执行器并执行任务#

最后,利用构建好的模型,数据加载器,评测指标构建执行器 (Runner),同时在其中配置 优化器、工作路径、训练与验证配置等选项,即可通过调用执行器的 train() 方法启动训练:

from torch.optim import SGD
from mmengine.runner import Runner

runner = Runner(
    # 用以训练和验证的模型,需要满足特定的接口需求
    model=MMResNet50(),
    # 工作路径,用以保存训练日志、权重文件信息
    work_dir=temp_dir/'./work_dir',
    # 训练数据加载器,需要满足 PyTorch 数据加载器协议
    train_dataloader=train_dataloader,
    # 优化器包装,用于模型优化,并提供 AMP、梯度累积等附加功能
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    # 训练配置,用于指定训练周期、验证间隔等信息
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    # 验证数据加载器,需要满足 PyTorch 数据加载器协议
    val_dataloader=val_dataloader,
    # 验证配置,用于指定验证所需要的额外参数
    val_cfg=dict(),
    # 用于验证的评测器,这里使用默认评测器,并评测指标
    val_evaluator=dict(type=Accuracy),
)

runner.train()
Hide code cell output
11/22 16:43:51 - mmengine - INFO - 
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.12.2 | packaged by conda-forge | (main, Feb 16 2024, 20:50:58) [GCC 12.3.0]
    CUDA available: True
    MUSA available: False
    numpy_random_seed: 1560666916
    GPU 0: NVIDIA GeForce RTX 3090
    GPU 1: NVIDIA GeForce RTX 2080 Ti
    CUDA_HOME: /media/pc/data/lxw/envs/anaconda3x/envs/xxx
    NVCC: Cuda compilation tools, release 12.6, V12.6.20
    GCC: gcc (conda-forge gcc 12.4.0-0) 12.4.0
    PyTorch: 2.5.0
    PyTorch compiling details: PyTorch built with:
  - GCC 9.3
  - C++ Version: 201703
  - Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v3.5.3 (Git Hash 66f0cb9eb66affd2da3bf5f8d897376f04aae6af)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - CUDA Runtime 12.3
  - Built with CUDA Runtime 12.4
  - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90
  - CuDNN 90.1
  - Magma 2.6.1
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.4, CUDNN_VERSION=9.1.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.5.0, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, 

    TorchVision: 0.20.0
    OpenCV: 4.10.0
    MMEngine: 0.10.5

Runtime environment:
    dist_cfg: {'backend': 'nccl'}
    seed: 1560666916
    Distributed launcher: none
    Distributed training: False
    GPU number: 1
------------------------------------------------------------

11/22 16:43:51 - mmengine - INFO - Distributed training is not used, all SyncBatchNorm (SyncBN) layers in the model will be automatically reverted to BatchNormXd layers if they are used.
11/22 16:43:51 - mmengine - INFO - Hooks will be executed in the following order:
before_run:
(VERY_HIGH   ) RuntimeInfoHook                    
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
before_train:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_train_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(NORMAL      ) DistSamplerSeedHook                
 -------------------- 
before_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_train_iter:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
after_train_epoch:
(NORMAL      ) IterTimerHook                      
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_val:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
before_val_epoch:
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_val_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_val_iter:
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_val_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
(LOW         ) ParamSchedulerHook                 
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
after_val:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
after_train:
(VERY_HIGH   ) RuntimeInfoHook                    
(VERY_LOW    ) CheckpointHook                     
 -------------------- 
before_test:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
before_test_epoch:
(NORMAL      ) IterTimerHook                      
 -------------------- 
before_test_iter:
(NORMAL      ) IterTimerHook                      
 -------------------- 
after_test_iter:
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_test_epoch:
(VERY_HIGH   ) RuntimeInfoHook                    
(NORMAL      ) IterTimerHook                      
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
after_test:
(VERY_HIGH   ) RuntimeInfoHook                    
 -------------------- 
after_run:
(BELOW_NORMAL) LoggerHook                         
 -------------------- 
11/22 16:43:51 - mmengine - WARNING - Dataset CIFAR10 has no metainfo. ``dataset_meta`` in visualizer will be None.
11/22 16:43:51 - mmengine - WARNING - The prefix is not set in metric class Accuracy.
11/22 16:43:51 - mmengine - WARNING - Dataset CIFAR10 has no metainfo. ``dataset_meta`` in evaluator, metric and visualizer will be None.
11/22 16:43:52 - mmengine - WARNING - "FileClient" will be deprecated in future. Please use io functions in https://mmengine.readthedocs.io/en/latest/api/fileio.html#file-io
11/22 16:43:52 - mmengine - WARNING - "HardDiskBackend" is the alias of "LocalBackend" and the former will be deprecated in future.
11/22 16:43:52 - mmengine - INFO - Checkpoints will be saved to /media/pc/data/lxw/ai/torch-book/doc/tools/mmengine/.temp/work_dir.
11/22 16:43:59 - mmengine - INFO - Epoch(train) [1][  10/1563]  lr: 1.0000e-03  eta: 1:39:16  time: 0.7632  data_time: 0.0715  memory: 382  loss: 5.2001
11/22 16:44:00 - mmengine - INFO - Epoch(train) [1][  20/1563]  lr: 1.0000e-03  eta: 0:53:29  time: 0.0603  data_time: 0.0164  memory: 382  loss: 2.7405
11/22 16:44:01 - mmengine - INFO - Epoch(train) [1][  30/1563]  lr: 1.0000e-03  eta: 0:38:11  time: 0.0597  data_time: 0.0165  memory: 382  loss: 2.6204
11/22 16:44:01 - mmengine - INFO - Epoch(train) [1][  40/1563]  lr: 1.0000e-03  eta: 0:30:28  time: 0.0576  data_time: 0.0159  memory: 382  loss: 2.6943
11/22 16:44:02 - mmengine - INFO - Epoch(train) [1][  50/1563]  lr: 1.0000e-03  eta: 0:25:56  time: 0.0614  data_time: 0.0164  memory: 382  loss: 2.5952
11/22 16:44:02 - mmengine - INFO - Epoch(train) [1][  60/1563]  lr: 1.0000e-03  eta: 0:22:53  time: 0.0606  data_time: 0.0162  memory: 382  loss: 2.6457
11/22 16:44:03 - mmengine - INFO - Epoch(train) [1][  70/1563]  lr: 1.0000e-03  eta: 0:20:43  time: 0.0613  data_time: 0.0164  memory: 382  loss: 2.5014
11/22 16:44:04 - mmengine - INFO - Epoch(train) [1][  80/1563]  lr: 1.0000e-03  eta: 0:19:05  time: 0.0602  data_time: 0.0161  memory: 382  loss: 2.6964
11/22 16:44:04 - mmengine - INFO - Epoch(train) [1][  90/1563]  lr: 1.0000e-03  eta: 0:17:48  time: 0.0609  data_time: 0.0161  memory: 382  loss: 2.5502
11/22 16:44:05 - mmengine - INFO - Epoch(train) [1][ 100/1563]  lr: 1.0000e-03  eta: 0:16:47  time: 0.0601  data_time: 0.0161  memory: 382  loss: 2.7025
11/22 16:44:05 - mmengine - INFO - Epoch(train) [1][ 110/1563]  lr: 1.0000e-03  eta: 0:15:56  time: 0.0596  data_time: 0.0159  memory: 382  loss: 2.6884
11/22 16:44:06 - mmengine - INFO - Epoch(train) [1][ 120/1563]  lr: 1.0000e-03  eta: 0:15:13  time: 0.0598  data_time: 0.0162  memory: 382  loss: 2.4517
11/22 16:44:07 - mmengine - INFO - Epoch(train) [1][ 130/1563]  lr: 1.0000e-03  eta: 0:14:37  time: 0.0594  data_time: 0.0159  memory: 382  loss: 2.4550
11/22 16:44:07 - mmengine - INFO - Epoch(train) [1][ 140/1563]  lr: 1.0000e-03  eta: 0:14:07  time: 0.0614  data_time: 0.0162  memory: 382  loss: 2.6048
11/22 16:44:08 - mmengine - INFO - Epoch(train) [1][ 150/1563]  lr: 1.0000e-03  eta: 0:13:39  time: 0.0584  data_time: 0.0159  memory: 382  loss: 2.5119
11/22 16:44:08 - mmengine - INFO - Epoch(train) [1][ 160/1563]  lr: 1.0000e-03  eta: 0:13:15  time: 0.0591  data_time: 0.0158  memory: 382  loss: 2.6287
11/22 16:44:09 - mmengine - INFO - Epoch(train) [1][ 170/1563]  lr: 1.0000e-03  eta: 0:12:54  time: 0.0591  data_time: 0.0159  memory: 382  loss: 2.5352
11/22 16:44:09 - mmengine - INFO - Epoch(train) [1][ 180/1563]  lr: 1.0000e-03  eta: 0:12:35  time: 0.0595  data_time: 0.0158  memory: 382  loss: 2.3148
11/22 16:44:10 - mmengine - INFO - Epoch(train) [1][ 190/1563]  lr: 1.0000e-03  eta: 0:12:19  time: 0.0610  data_time: 0.0161  memory: 382  loss: 2.4886
11/22 16:44:11 - mmengine - INFO - Epoch(train) [1][ 200/1563]  lr: 1.0000e-03  eta: 0:12:04  time: 0.0604  data_time: 0.0161  memory: 382  loss: 2.6004
11/22 16:44:11 - mmengine - INFO - Epoch(train) [1][ 210/1563]  lr: 1.0000e-03  eta: 0:11:51  time: 0.0608  data_time: 0.0163  memory: 382  loss: 2.4654
11/22 16:44:12 - mmengine - INFO - Epoch(train) [1][ 220/1563]  lr: 1.0000e-03  eta: 0:11:38  time: 0.0609  data_time: 0.0161  memory: 382  loss: 2.4486
11/22 16:44:13 - mmengine - INFO - Epoch(train) [1][ 230/1563]  lr: 1.0000e-03  eta: 0:11:29  time: 0.0652  data_time: 0.0185  memory: 382  loss: 2.4717
11/22 16:44:13 - mmengine - INFO - Epoch(train) [1][ 240/1563]  lr: 1.0000e-03  eta: 0:11:16  time: 0.0543  data_time: 0.0162  memory: 382  loss: 2.8184
11/22 16:44:14 - mmengine - INFO - Epoch(train) [1][ 250/1563]  lr: 1.0000e-03  eta: 0:11:05  time: 0.0545  data_time: 0.0147  memory: 382  loss: 2.5532
11/22 16:44:14 - mmengine - INFO - Epoch(train) [1][ 260/1563]  lr: 1.0000e-03  eta: 0:10:55  time: 0.0567  data_time: 0.0151  memory: 382  loss: 2.5035
11/22 16:44:15 - mmengine - INFO - Epoch(train) [1][ 270/1563]  lr: 1.0000e-03  eta: 0:10:46  time: 0.0573  data_time: 0.0150  memory: 382  loss: 2.4546
11/22 16:44:15 - mmengine - INFO - Epoch(train) [1][ 280/1563]  lr: 1.0000e-03  eta: 0:10:35  time: 0.0502  data_time: 0.0148  memory: 382  loss: 2.4746
11/22 16:44:16 - mmengine - INFO - Epoch(train) [1][ 290/1563]  lr: 1.0000e-03  eta: 0:10:27  time: 0.0538  data_time: 0.0146  memory: 382  loss: 2.4412
11/22 16:44:16 - mmengine - INFO - Epoch(train) [1][ 300/1563]  lr: 1.0000e-03  eta: 0:10:19  time: 0.0551  data_time: 0.0147  memory: 382  loss: 2.8462
11/22 16:44:17 - mmengine - INFO - Epoch(train) [1][ 310/1563]  lr: 1.0000e-03  eta: 0:10:13  time: 0.0617  data_time: 0.0172  memory: 382  loss: 2.6183
11/22 16:44:18 - mmengine - INFO - Epoch(train) [1][ 320/1563]  lr: 1.0000e-03  eta: 0:10:11  time: 0.0776  data_time: 0.0266  memory: 382  loss: 2.5153
11/22 16:44:18 - mmengine - INFO - Epoch(train) [1][ 330/1563]  lr: 1.0000e-03  eta: 0:10:07  time: 0.0658  data_time: 0.0222  memory: 382  loss: 2.6309
11/22 16:44:19 - mmengine - INFO - Epoch(train) [1][ 340/1563]  lr: 1.0000e-03  eta: 0:09:59  time: 0.0520  data_time: 0.0147  memory: 382  loss: 2.4788
11/22 16:44:20 - mmengine - INFO - Epoch(train) [1][ 350/1563]  lr: 1.0000e-03  eta: 0:09:53  time: 0.0540  data_time: 0.0143  memory: 382  loss: 2.3778
11/22 16:44:20 - mmengine - INFO - Epoch(train) [1][ 360/1563]  lr: 1.0000e-03  eta: 0:09:47  time: 0.0544  data_time: 0.0143  memory: 382  loss: 2.3699
11/22 16:44:21 - mmengine - INFO - Epoch(train) [1][ 370/1563]  lr: 1.0000e-03  eta: 0:09:41  time: 0.0534  data_time: 0.0142  memory: 382  loss: 2.3043
11/22 16:44:21 - mmengine - INFO - Epoch(train) [1][ 380/1563]  lr: 1.0000e-03  eta: 0:09:35  time: 0.0530  data_time: 0.0141  memory: 382  loss: 2.2693
11/22 16:44:22 - mmengine - INFO - Epoch(train) [1][ 390/1563]  lr: 1.0000e-03  eta: 0:09:30  time: 0.0537  data_time: 0.0140  memory: 382  loss: 2.2301
11/22 16:44:22 - mmengine - INFO - Epoch(train) [1][ 400/1563]  lr: 1.0000e-03  eta: 0:09:25  time: 0.0529  data_time: 0.0139  memory: 382  loss: 2.2824
11/22 16:44:23 - mmengine - INFO - Epoch(train) [1][ 410/1563]  lr: 1.0000e-03  eta: 0:09:20  time: 0.0529  data_time: 0.0140  memory: 382  loss: 2.2469
11/22 16:44:23 - mmengine - INFO - Epoch(train) [1][ 420/1563]  lr: 1.0000e-03  eta: 0:09:15  time: 0.0525  data_time: 0.0140  memory: 382  loss: 2.2944
11/22 16:44:24 - mmengine - INFO - Epoch(train) [1][ 430/1563]  lr: 1.0000e-03  eta: 0:09:11  time: 0.0527  data_time: 0.0139  memory: 382  loss: 2.2259
11/22 16:44:24 - mmengine - INFO - Epoch(train) [1][ 440/1563]  lr: 1.0000e-03  eta: 0:09:06  time: 0.0526  data_time: 0.0140  memory: 382  loss: 2.3950
11/22 16:44:25 - mmengine - INFO - Epoch(train) [1][ 450/1563]  lr: 1.0000e-03  eta: 0:09:02  time: 0.0526  data_time: 0.0138  memory: 382  loss: 2.2780
11/22 16:44:25 - mmengine - INFO - Epoch(train) [1][ 460/1563]  lr: 1.0000e-03  eta: 0:08:58  time: 0.0522  data_time: 0.0141  memory: 382  loss: 2.2708
11/22 16:44:26 - mmengine - INFO - Epoch(train) [1][ 470/1563]  lr: 1.0000e-03  eta: 0:08:54  time: 0.0523  data_time: 0.0136  memory: 382  loss: 2.2801
11/22 16:44:26 - mmengine - INFO - Epoch(train) [1][ 480/1563]  lr: 1.0000e-03  eta: 0:08:50  time: 0.0528  data_time: 0.0140  memory: 382  loss: 2.2182
11/22 16:44:27 - mmengine - INFO - Epoch(train) [1][ 490/1563]  lr: 1.0000e-03  eta: 0:08:46  time: 0.0523  data_time: 0.0137  memory: 382  loss: 2.3097
11/22 16:44:27 - mmengine - INFO - Epoch(train) [1][ 500/1563]  lr: 1.0000e-03  eta: 0:08:43  time: 0.0525  data_time: 0.0138  memory: 382  loss: 2.2631
11/22 16:44:28 - mmengine - INFO - Epoch(train) [1][ 510/1563]  lr: 1.0000e-03  eta: 0:08:40  time: 0.0550  data_time: 0.0144  memory: 382  loss: 2.4475
11/22 16:44:29 - mmengine - INFO - Epoch(train) [1][ 520/1563]  lr: 1.0000e-03  eta: 0:08:37  time: 0.0557  data_time: 0.0144  memory: 382  loss: 2.2028
11/22 16:44:29 - mmengine - INFO - Epoch(train) [1][ 530/1563]  lr: 1.0000e-03  eta: 0:08:34  time: 0.0569  data_time: 0.0148  memory: 382  loss: 2.2588
11/22 16:44:30 - mmengine - INFO - Epoch(train) [1][ 540/1563]  lr: 1.0000e-03  eta: 0:08:31  time: 0.0563  data_time: 0.0147  memory: 382  loss: 2.2757
11/22 16:44:30 - mmengine - INFO - Epoch(train) [1][ 550/1563]  lr: 1.0000e-03  eta: 0:08:29  time: 0.0594  data_time: 0.0191  memory: 382  loss: 2.2082
11/22 16:44:31 - mmengine - INFO - Epoch(train) [1][ 560/1563]  lr: 1.0000e-03  eta: 0:08:26  time: 0.0524  data_time: 0.0153  memory: 382  loss: 2.3530
11/22 16:44:31 - mmengine - INFO - Epoch(train) [1][ 570/1563]  lr: 1.0000e-03  eta: 0:08:24  time: 0.0554  data_time: 0.0147  memory: 382  loss: 2.2255
11/22 16:44:32 - mmengine - INFO - Epoch(train) [1][ 580/1563]  lr: 1.0000e-03  eta: 0:08:21  time: 0.0570  data_time: 0.0150  memory: 382  loss: 2.3278
11/22 16:44:32 - mmengine - INFO - Epoch(train) [1][ 590/1563]  lr: 1.0000e-03  eta: 0:08:19  time: 0.0574  data_time: 0.0149  memory: 382  loss: 2.3414
11/22 16:44:33 - mmengine - INFO - Epoch(train) [1][ 600/1563]  lr: 1.0000e-03  eta: 0:08:17  time: 0.0572  data_time: 0.0148  memory: 382  loss: 2.3389
11/22 16:44:34 - mmengine - INFO - Epoch(train) [1][ 610/1563]  lr: 1.0000e-03  eta: 0:08:15  time: 0.0572  data_time: 0.0149  memory: 382  loss: 2.1401
11/22 16:44:34 - mmengine - INFO - Epoch(train) [1][ 620/1563]  lr: 1.0000e-03  eta: 0:08:13  time: 0.0572  data_time: 0.0149  memory: 382  loss: 2.2828
11/22 16:44:35 - mmengine - INFO - Epoch(train) [1][ 630/1563]  lr: 1.0000e-03  eta: 0:08:13  time: 0.0776  data_time: 0.0256  memory: 382  loss: 2.1000
11/22 16:44:36 - mmengine - INFO - Epoch(train) [1][ 640/1563]  lr: 1.0000e-03  eta: 0:08:14  time: 0.0787  data_time: 0.0267  memory: 382  loss: 2.1133
11/22 16:44:37 - mmengine - INFO - Epoch(train) [1][ 650/1563]  lr: 1.0000e-03  eta: 0:08:14  time: 0.0742  data_time: 0.0253  memory: 382  loss: 2.1463
11/22 16:44:37 - mmengine - INFO - Epoch(train) [1][ 660/1563]  lr: 1.0000e-03  eta: 0:08:13  time: 0.0722  data_time: 0.0253  memory: 382  loss: 2.0891
11/22 16:44:38 - mmengine - INFO - Epoch(train) [1][ 670/1563]  lr: 1.0000e-03  eta: 0:08:11  time: 0.0494  data_time: 0.0142  memory: 382  loss: 2.1502
11/22 16:44:38 - mmengine - INFO - Epoch(train) [1][ 680/1563]  lr: 1.0000e-03  eta: 0:08:08  time: 0.0542  data_time: 0.0142  memory: 382  loss: 2.1161
11/22 16:44:39 - mmengine - INFO - Epoch(train) [1][ 690/1563]  lr: 1.0000e-03  eta: 0:08:06  time: 0.0554  data_time: 0.0144  memory: 382  loss: 2.0932
11/22 16:44:40 - mmengine - INFO - Epoch(train) [1][ 700/1563]  lr: 1.0000e-03  eta: 0:08:06  time: 0.0682  data_time: 0.0216  memory: 382  loss: 2.1566
11/22 16:44:40 - mmengine - INFO - Epoch(train) [1][ 710/1563]  lr: 1.0000e-03  eta: 0:08:06  time: 0.0751  data_time: 0.0259  memory: 382  loss: 2.2086
11/22 16:44:41 - mmengine - INFO - Epoch(train) [1][ 720/1563]  lr: 1.0000e-03  eta: 0:08:06  time: 0.0754  data_time: 0.0260  memory: 382  loss: 2.0933
11/22 16:44:42 - mmengine - INFO - Epoch(train) [1][ 730/1563]  lr: 1.0000e-03  eta: 0:08:06  time: 0.0747  data_time: 0.0259  memory: 382  loss: 2.2761
11/22 16:44:43 - mmengine - INFO - Epoch(train) [1][ 740/1563]  lr: 1.0000e-03  eta: 0:08:05  time: 0.0754  data_time: 0.0260  memory: 382  loss: 2.0696
11/22 16:44:43 - mmengine - INFO - Epoch(train) [1][ 750/1563]  lr: 1.0000e-03  eta: 0:08:05  time: 0.0755  data_time: 0.0261  memory: 382  loss: 2.1613
11/22 16:44:44 - mmengine - INFO - Epoch(train) [1][ 760/1563]  lr: 1.0000e-03  eta: 0:08:04  time: 0.0561  data_time: 0.0185  memory: 382  loss: 2.1743
11/22 16:44:44 - mmengine - INFO - Epoch(train) [1][ 770/1563]  lr: 1.0000e-03  eta: 0:08:01  time: 0.0478  data_time: 0.0137  memory: 382  loss: 2.1002
11/22 16:44:45 - mmengine - INFO - Epoch(train) [1][ 780/1563]  lr: 1.0000e-03  eta: 0:07:59  time: 0.0522  data_time: 0.0139  memory: 382  loss: 2.1998
11/22 16:44:45 - mmengine - INFO - Epoch(train) [1][ 790/1563]  lr: 1.0000e-03  eta: 0:07:57  time: 0.0538  data_time: 0.0143  memory: 382  loss: 2.1168
11/22 16:44:46 - mmengine - INFO - Epoch(train) [1][ 800/1563]  lr: 1.0000e-03  eta: 0:07:55  time: 0.0539  data_time: 0.0144  memory: 382  loss: 2.2058
11/22 16:44:46 - mmengine - INFO - Epoch(train) [1][ 810/1563]  lr: 1.0000e-03  eta: 0:07:53  time: 0.0536  data_time: 0.0142  memory: 382  loss: 2.2244
11/22 16:44:47 - mmengine - INFO - Epoch(train) [1][ 820/1563]  lr: 1.0000e-03  eta: 0:07:51  time: 0.0521  data_time: 0.0137  memory: 382  loss: 2.2053
11/22 16:44:47 - mmengine - INFO - Epoch(train) [1][ 830/1563]  lr: 1.0000e-03  eta: 0:07:49  time: 0.0527  data_time: 0.0140  memory: 382  loss: 2.1958
11/22 16:44:48 - mmengine - INFO - Epoch(train) [1][ 840/1563]  lr: 1.0000e-03  eta: 0:07:47  time: 0.0526  data_time: 0.0140  memory: 382  loss: 2.2440
11/22 16:44:49 - mmengine - INFO - Epoch(train) [1][ 850/1563]  lr: 1.0000e-03  eta: 0:07:46  time: 0.0545  data_time: 0.0141  memory: 382  loss: 2.2917
11/22 16:44:49 - mmengine - INFO - Epoch(train) [1][ 860/1563]  lr: 1.0000e-03  eta: 0:07:44  time: 0.0526  data_time: 0.0142  memory: 382  loss: 2.1799
11/22 16:44:50 - mmengine - INFO - Epoch(train) [1][ 870/1563]  lr: 1.0000e-03  eta: 0:07:42  time: 0.0520  data_time: 0.0137  memory: 382  loss: 2.1603
11/22 16:44:50 - mmengine - INFO - Epoch(train) [1][ 880/1563]  lr: 1.0000e-03  eta: 0:07:40  time: 0.0525  data_time: 0.0138  memory: 382  loss: 2.1370
11/22 16:44:51 - mmengine - INFO - Epoch(train) [1][ 890/1563]  lr: 1.0000e-03  eta: 0:07:38  time: 0.0522  data_time: 0.0136  memory: 382  loss: 2.0750
11/22 16:44:51 - mmengine - INFO - Epoch(train) [1][ 900/1563]  lr: 1.0000e-03  eta: 0:07:37  time: 0.0528  data_time: 0.0138  memory: 382  loss: 2.1426
11/22 16:44:52 - mmengine - INFO - Epoch(train) [1][ 910/1563]  lr: 1.0000e-03  eta: 0:07:35  time: 0.0538  data_time: 0.0145  memory: 382  loss: 2.0531
11/22 16:44:52 - mmengine - INFO - Epoch(train) [1][ 920/1563]  lr: 1.0000e-03  eta: 0:07:34  time: 0.0653  data_time: 0.0208  memory: 382  loss: 2.1486
11/22 16:44:53 - mmengine - INFO - Epoch(train) [1][ 930/1563]  lr: 1.0000e-03  eta: 0:07:34  time: 0.0758  data_time: 0.0259  memory: 382  loss: 2.0900
11/22 16:44:54 - mmengine - INFO - Epoch(train) [1][ 940/1563]  lr: 1.0000e-03  eta: 0:07:34  time: 0.0740  data_time: 0.0257  memory: 382  loss: 2.1378
11/22 16:44:54 - mmengine - INFO - Epoch(train) [1][ 950/1563]  lr: 1.0000e-03  eta: 0:07:32  time: 0.0476  data_time: 0.0135  memory: 382  loss: 2.0934
11/22 16:44:55 - mmengine - INFO - Epoch(train) [1][ 960/1563]  lr: 1.0000e-03  eta: 0:07:31  time: 0.0512  data_time: 0.0134  memory: 382  loss: 2.1247
11/22 16:44:55 - mmengine - INFO - Epoch(train) [1][ 970/1563]  lr: 1.0000e-03  eta: 0:07:29  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.9091
11/22 16:44:56 - mmengine - INFO - Epoch(train) [1][ 980/1563]  lr: 1.0000e-03  eta: 0:07:27  time: 0.0523  data_time: 0.0138  memory: 382  loss: 2.0327
11/22 16:44:56 - mmengine - INFO - Epoch(train) [1][ 990/1563]  lr: 1.0000e-03  eta: 0:07:26  time: 0.0516  data_time: 0.0135  memory: 382  loss: 2.0589
11/22 16:44:57 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:44:57 - mmengine - INFO - Epoch(train) [1][1000/1563]  lr: 1.0000e-03  eta: 0:07:24  time: 0.0517  data_time: 0.0134  memory: 382  loss: 2.0987
11/22 16:44:57 - mmengine - INFO - Epoch(train) [1][1010/1563]  lr: 1.0000e-03  eta: 0:07:23  time: 0.0518  data_time: 0.0136  memory: 382  loss: 2.1372
11/22 16:44:58 - mmengine - INFO - Epoch(train) [1][1020/1563]  lr: 1.0000e-03  eta: 0:07:21  time: 0.0542  data_time: 0.0143  memory: 382  loss: 2.0680
11/22 16:44:59 - mmengine - INFO - Epoch(train) [1][1030/1563]  lr: 1.0000e-03  eta: 0:07:20  time: 0.0537  data_time: 0.0142  memory: 382  loss: 2.0451
11/22 16:44:59 - mmengine - INFO - Epoch(train) [1][1040/1563]  lr: 1.0000e-03  eta: 0:07:18  time: 0.0526  data_time: 0.0140  memory: 382  loss: 1.9602
11/22 16:45:00 - mmengine - INFO - Epoch(train) [1][1050/1563]  lr: 1.0000e-03  eta: 0:07:17  time: 0.0518  data_time: 0.0134  memory: 382  loss: 2.1273
11/22 16:45:00 - mmengine - INFO - Epoch(train) [1][1060/1563]  lr: 1.0000e-03  eta: 0:07:15  time: 0.0517  data_time: 0.0136  memory: 382  loss: 2.0634
11/22 16:45:01 - mmengine - INFO - Epoch(train) [1][1070/1563]  lr: 1.0000e-03  eta: 0:07:14  time: 0.0522  data_time: 0.0137  memory: 382  loss: 2.0051
11/22 16:45:01 - mmengine - INFO - Epoch(train) [1][1080/1563]  lr: 1.0000e-03  eta: 0:07:13  time: 0.0519  data_time: 0.0137  memory: 382  loss: 2.0453
11/22 16:45:02 - mmengine - INFO - Epoch(train) [1][1090/1563]  lr: 1.0000e-03  eta: 0:07:11  time: 0.0517  data_time: 0.0136  memory: 382  loss: 2.0371
11/22 16:45:02 - mmengine - INFO - Epoch(train) [1][1100/1563]  lr: 1.0000e-03  eta: 0:07:10  time: 0.0518  data_time: 0.0135  memory: 382  loss: 2.0868
11/22 16:45:03 - mmengine - INFO - Epoch(train) [1][1110/1563]  lr: 1.0000e-03  eta: 0:07:08  time: 0.0517  data_time: 0.0136  memory: 382  loss: 2.0355
11/22 16:45:03 - mmengine - INFO - Epoch(train) [1][1120/1563]  lr: 1.0000e-03  eta: 0:07:07  time: 0.0520  data_time: 0.0136  memory: 382  loss: 2.0876
11/22 16:45:04 - mmengine - INFO - Epoch(train) [1][1130/1563]  lr: 1.0000e-03  eta: 0:07:06  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.9616
11/22 16:45:04 - mmengine - INFO - Epoch(train) [1][1140/1563]  lr: 1.0000e-03  eta: 0:07:04  time: 0.0518  data_time: 0.0135  memory: 382  loss: 2.1710
11/22 16:45:05 - mmengine - INFO - Epoch(train) [1][1150/1563]  lr: 1.0000e-03  eta: 0:07:03  time: 0.0516  data_time: 0.0134  memory: 382  loss: 2.0644
11/22 16:45:05 - mmengine - INFO - Epoch(train) [1][1160/1563]  lr: 1.0000e-03  eta: 0:07:02  time: 0.0520  data_time: 0.0136  memory: 382  loss: 2.0819
11/22 16:45:06 - mmengine - INFO - Epoch(train) [1][1170/1563]  lr: 1.0000e-03  eta: 0:07:00  time: 0.0518  data_time: 0.0136  memory: 382  loss: 2.1671
11/22 16:45:06 - mmengine - INFO - Epoch(train) [1][1180/1563]  lr: 1.0000e-03  eta: 0:06:59  time: 0.0524  data_time: 0.0139  memory: 382  loss: 2.1896
11/22 16:45:07 - mmengine - INFO - Epoch(train) [1][1190/1563]  lr: 1.0000e-03  eta: 0:06:58  time: 0.0517  data_time: 0.0134  memory: 382  loss: 2.0388
11/22 16:45:07 - mmengine - INFO - Epoch(train) [1][1200/1563]  lr: 1.0000e-03  eta: 0:06:57  time: 0.0522  data_time: 0.0137  memory: 382  loss: 2.0957
11/22 16:45:08 - mmengine - INFO - Epoch(train) [1][1210/1563]  lr: 1.0000e-03  eta: 0:06:55  time: 0.0519  data_time: 0.0135  memory: 382  loss: 2.0627
11/22 16:45:08 - mmengine - INFO - Epoch(train) [1][1220/1563]  lr: 1.0000e-03  eta: 0:06:54  time: 0.0519  data_time: 0.0134  memory: 382  loss: 2.0116
11/22 16:45:09 - mmengine - INFO - Epoch(train) [1][1230/1563]  lr: 1.0000e-03  eta: 0:06:53  time: 0.0520  data_time: 0.0136  memory: 382  loss: 2.0208
11/22 16:45:09 - mmengine - INFO - Epoch(train) [1][1240/1563]  lr: 1.0000e-03  eta: 0:06:52  time: 0.0534  data_time: 0.0140  memory: 382  loss: 1.9053
11/22 16:45:10 - mmengine - INFO - Epoch(train) [1][1250/1563]  lr: 1.0000e-03  eta: 0:06:51  time: 0.0547  data_time: 0.0144  memory: 382  loss: 2.0169
11/22 16:45:11 - mmengine - INFO - Epoch(train) [1][1260/1563]  lr: 1.0000e-03  eta: 0:06:50  time: 0.0545  data_time: 0.0145  memory: 382  loss: 1.9237
11/22 16:45:11 - mmengine - INFO - Epoch(train) [1][1270/1563]  lr: 1.0000e-03  eta: 0:06:49  time: 0.0546  data_time: 0.0144  memory: 382  loss: 2.1535
11/22 16:45:12 - mmengine - INFO - Epoch(train) [1][1280/1563]  lr: 1.0000e-03  eta: 0:06:48  time: 0.0557  data_time: 0.0143  memory: 382  loss: 1.9716
11/22 16:45:12 - mmengine - INFO - Epoch(train) [1][1290/1563]  lr: 1.0000e-03  eta: 0:06:47  time: 0.0562  data_time: 0.0145  memory: 382  loss: 2.0045
11/22 16:45:13 - mmengine - INFO - Epoch(train) [1][1300/1563]  lr: 1.0000e-03  eta: 0:06:46  time: 0.0558  data_time: 0.0144  memory: 382  loss: 2.0869
11/22 16:45:13 - mmengine - INFO - Epoch(train) [1][1310/1563]  lr: 1.0000e-03  eta: 0:06:45  time: 0.0557  data_time: 0.0143  memory: 382  loss: 1.9966
11/22 16:45:14 - mmengine - INFO - Epoch(train) [1][1320/1563]  lr: 1.0000e-03  eta: 0:06:44  time: 0.0550  data_time: 0.0140  memory: 382  loss: 1.9463
11/22 16:45:14 - mmengine - INFO - Epoch(train) [1][1330/1563]  lr: 1.0000e-03  eta: 0:06:43  time: 0.0530  data_time: 0.0137  memory: 382  loss: 1.8883
11/22 16:45:15 - mmengine - INFO - Epoch(train) [1][1340/1563]  lr: 1.0000e-03  eta: 0:06:42  time: 0.0515  data_time: 0.0134  memory: 382  loss: 2.0122
11/22 16:45:15 - mmengine - INFO - Epoch(train) [1][1350/1563]  lr: 1.0000e-03  eta: 0:06:41  time: 0.0517  data_time: 0.0137  memory: 382  loss: 1.9305
11/22 16:45:16 - mmengine - INFO - Epoch(train) [1][1360/1563]  lr: 1.0000e-03  eta: 0:06:39  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.9142
11/22 16:45:16 - mmengine - INFO - Epoch(train) [1][1370/1563]  lr: 1.0000e-03  eta: 0:06:38  time: 0.0537  data_time: 0.0138  memory: 382  loss: 1.9884
11/22 16:45:17 - mmengine - INFO - Epoch(train) [1][1380/1563]  lr: 1.0000e-03  eta: 0:06:37  time: 0.0536  data_time: 0.0137  memory: 382  loss: 1.8882
11/22 16:45:18 - mmengine - INFO - Epoch(train) [1][1390/1563]  lr: 1.0000e-03  eta: 0:06:36  time: 0.0528  data_time: 0.0135  memory: 382  loss: 2.0320
11/22 16:45:18 - mmengine - INFO - Epoch(train) [1][1400/1563]  lr: 1.0000e-03  eta: 0:06:35  time: 0.0513  data_time: 0.0134  memory: 382  loss: 2.0217
11/22 16:45:19 - mmengine - INFO - Epoch(train) [1][1410/1563]  lr: 1.0000e-03  eta: 0:06:34  time: 0.0519  data_time: 0.0136  memory: 382  loss: 1.9956
11/22 16:45:19 - mmengine - INFO - Epoch(train) [1][1420/1563]  lr: 1.0000e-03  eta: 0:06:33  time: 0.0518  data_time: 0.0134  memory: 382  loss: 2.0142
11/22 16:45:20 - mmengine - INFO - Epoch(train) [1][1430/1563]  lr: 1.0000e-03  eta: 0:06:32  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.9738
11/22 16:45:20 - mmengine - INFO - Epoch(train) [1][1440/1563]  lr: 1.0000e-03  eta: 0:06:31  time: 0.0521  data_time: 0.0136  memory: 382  loss: 2.0285
11/22 16:45:21 - mmengine - INFO - Epoch(train) [1][1450/1563]  lr: 1.0000e-03  eta: 0:06:30  time: 0.0514  data_time: 0.0134  memory: 382  loss: 2.0299
11/22 16:45:21 - mmengine - INFO - Epoch(train) [1][1460/1563]  lr: 1.0000e-03  eta: 0:06:29  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.8035
11/22 16:45:22 - mmengine - INFO - Epoch(train) [1][1470/1563]  lr: 1.0000e-03  eta: 0:06:28  time: 0.0516  data_time: 0.0134  memory: 382  loss: 2.1066
11/22 16:45:22 - mmengine - INFO - Epoch(train) [1][1480/1563]  lr: 1.0000e-03  eta: 0:06:27  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.8985
11/22 16:45:23 - mmengine - INFO - Epoch(train) [1][1490/1563]  lr: 1.0000e-03  eta: 0:06:26  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.8805
11/22 16:45:23 - mmengine - INFO - Epoch(train) [1][1500/1563]  lr: 1.0000e-03  eta: 0:06:25  time: 0.0519  data_time: 0.0135  memory: 382  loss: 2.0064
11/22 16:45:24 - mmengine - INFO - Epoch(train) [1][1510/1563]  lr: 1.0000e-03  eta: 0:06:24  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.9251
11/22 16:45:24 - mmengine - INFO - Epoch(train) [1][1520/1563]  lr: 1.0000e-03  eta: 0:06:23  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.9094
11/22 16:45:25 - mmengine - INFO - Epoch(train) [1][1530/1563]  lr: 1.0000e-03  eta: 0:06:22  time: 0.0517  data_time: 0.0135  memory: 382  loss: 1.9858
11/22 16:45:25 - mmengine - INFO - Epoch(train) [1][1540/1563]  lr: 1.0000e-03  eta: 0:06:21  time: 0.0519  data_time: 0.0135  memory: 382  loss: 1.9386
11/22 16:45:26 - mmengine - INFO - Epoch(train) [1][1550/1563]  lr: 1.0000e-03  eta: 0:06:20  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.8874
11/22 16:45:26 - mmengine - INFO - Epoch(train) [1][1560/1563]  lr: 1.0000e-03  eta: 0:06:19  time: 0.0518  data_time: 0.0137  memory: 382  loss: 1.9668
11/22 16:45:27 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:45:27 - mmengine - INFO - Saving checkpoint at 1 epochs
11/22 16:45:27 - mmengine - WARNING - `save_param_scheduler` is True but `self.param_schedulers` is None, so skip saving parameter schedulers
11/22 16:45:28 - mmengine - INFO - Epoch(val) [1][ 10/313]    eta: 0:00:22  time: 0.0747  data_time: 0.0111  memory: 382  
11/22 16:45:29 - mmengine - INFO - Epoch(val) [1][ 20/313]    eta: 0:00:13  time: 0.0198  data_time: 0.0097  memory: 225  
11/22 16:45:29 - mmengine - INFO - Epoch(val) [1][ 30/313]    eta: 0:00:10  time: 0.0199  data_time: 0.0096  memory: 225  
11/22 16:45:29 - mmengine - INFO - Epoch(val) [1][ 40/313]    eta: 0:00:09  time: 0.0181  data_time: 0.0089  memory: 225  
11/22 16:45:29 - mmengine - INFO - Epoch(val) [1][ 50/313]    eta: 0:00:07  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:45:29 - mmengine - INFO - Epoch(val) [1][ 60/313]    eta: 0:00:07  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:45:29 - mmengine - INFO - Epoch(val) [1][ 70/313]    eta: 0:00:06  time: 0.0176  data_time: 0.0086  memory: 225  
11/22 16:45:30 - mmengine - INFO - Epoch(val) [1][ 80/313]    eta: 0:00:05  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:45:30 - mmengine - INFO - Epoch(val) [1][ 90/313]    eta: 0:00:05  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:45:30 - mmengine - INFO - Epoch(val) [1][100/313]    eta: 0:00:05  time: 0.0170  data_time: 0.0083  memory: 225  
11/22 16:45:30 - mmengine - INFO - Epoch(val) [1][110/313]    eta: 0:00:04  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:45:30 - mmengine - INFO - Epoch(val) [1][120/313]    eta: 0:00:04  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:45:30 - mmengine - INFO - Epoch(val) [1][130/313]    eta: 0:00:04  time: 0.0167  data_time: 0.0082  memory: 225  
11/22 16:45:31 - mmengine - INFO - Epoch(val) [1][140/313]    eta: 0:00:03  time: 0.0167  data_time: 0.0082  memory: 225  
11/22 16:45:31 - mmengine - INFO - Epoch(val) [1][150/313]    eta: 0:00:03  time: 0.0168  data_time: 0.0082  memory: 225  
11/22 16:45:31 - mmengine - INFO - Epoch(val) [1][160/313]    eta: 0:00:03  time: 0.0171  data_time: 0.0084  memory: 225  
11/22 16:45:31 - mmengine - INFO - Epoch(val) [1][170/313]    eta: 0:00:02  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:45:31 - mmengine - INFO - Epoch(val) [1][180/313]    eta: 0:00:02  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:45:32 - mmengine - INFO - Epoch(val) [1][190/313]    eta: 0:00:02  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:45:32 - mmengine - INFO - Epoch(val) [1][200/313]    eta: 0:00:02  time: 0.0168  data_time: 0.0082  memory: 225  
11/22 16:45:32 - mmengine - INFO - Epoch(val) [1][210/313]    eta: 0:00:02  time: 0.0168  data_time: 0.0082  memory: 225  
11/22 16:45:32 - mmengine - INFO - Epoch(val) [1][220/313]    eta: 0:00:01  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:45:32 - mmengine - INFO - Epoch(val) [1][230/313]    eta: 0:00:01  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:45:32 - mmengine - INFO - Epoch(val) [1][240/313]    eta: 0:00:01  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:45:33 - mmengine - INFO - Epoch(val) [1][250/313]    eta: 0:00:01  time: 0.0167  data_time: 0.0082  memory: 225  
11/22 16:45:33 - mmengine - INFO - Epoch(val) [1][260/313]    eta: 0:00:01  time: 0.0170  data_time: 0.0083  memory: 225  
11/22 16:45:33 - mmengine - INFO - Epoch(val) [1][270/313]    eta: 0:00:00  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:45:33 - mmengine - INFO - Epoch(val) [1][280/313]    eta: 0:00:00  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:45:33 - mmengine - INFO - Epoch(val) [1][290/313]    eta: 0:00:00  time: 0.0172  data_time: 0.0084  memory: 225  
11/22 16:45:33 - mmengine - INFO - Epoch(val) [1][300/313]    eta: 0:00:00  time: 0.0173  data_time: 0.0086  memory: 225  
11/22 16:45:34 - mmengine - INFO - Epoch(val) [1][310/313]    eta: 0:00:00  time: 0.0171  data_time: 0.0085  memory: 225  
11/22 16:45:34 - mmengine - INFO - Epoch(val) [1][313/313]    accuracy: 35.3700  data_time: 0.0085  time: 0.0190
11/22 16:45:34 - mmengine - INFO - Epoch(train) [2][  10/1563]  lr: 1.0000e-03  eta: 0:06:19  time: 0.0469  data_time: 0.0135  memory: 382  loss: 1.9365
11/22 16:45:35 - mmengine - INFO - Epoch(train) [2][  20/1563]  lr: 1.0000e-03  eta: 0:06:18  time: 0.0506  data_time: 0.0132  memory: 382  loss: 1.8599
11/22 16:45:35 - mmengine - INFO - Epoch(train) [2][  30/1563]  lr: 1.0000e-03  eta: 0:06:17  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.8692
11/22 16:45:36 - mmengine - INFO - Epoch(train) [2][  40/1563]  lr: 1.0000e-03  eta: 0:06:16  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.8781
11/22 16:45:36 - mmengine - INFO - Epoch(train) [2][  50/1563]  lr: 1.0000e-03  eta: 0:06:15  time: 0.0522  data_time: 0.0138  memory: 382  loss: 1.9849
11/22 16:45:37 - mmengine - INFO - Epoch(train) [2][  60/1563]  lr: 1.0000e-03  eta: 0:06:14  time: 0.0520  data_time: 0.0138  memory: 382  loss: 2.0209
11/22 16:45:37 - mmengine - INFO - Epoch(train) [2][  70/1563]  lr: 1.0000e-03  eta: 0:06:13  time: 0.0534  data_time: 0.0143  memory: 382  loss: 2.0264
11/22 16:45:38 - mmengine - INFO - Epoch(train) [2][  80/1563]  lr: 1.0000e-03  eta: 0:06:13  time: 0.0516  data_time: 0.0136  memory: 382  loss: 1.7989
11/22 16:45:38 - mmengine - INFO - Epoch(train) [2][  90/1563]  lr: 1.0000e-03  eta: 0:06:12  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.8950
11/22 16:45:39 - mmengine - INFO - Epoch(train) [2][ 100/1563]  lr: 1.0000e-03  eta: 0:06:11  time: 0.0513  data_time: 0.0135  memory: 382  loss: 2.0333
11/22 16:45:39 - mmengine - INFO - Epoch(train) [2][ 110/1563]  lr: 1.0000e-03  eta: 0:06:10  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.8740
11/22 16:45:40 - mmengine - INFO - Epoch(train) [2][ 120/1563]  lr: 1.0000e-03  eta: 0:06:09  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.8757
11/22 16:45:40 - mmengine - INFO - Epoch(train) [2][ 130/1563]  lr: 1.0000e-03  eta: 0:06:08  time: 0.0516  data_time: 0.0136  memory: 382  loss: 1.7964
11/22 16:45:41 - mmengine - INFO - Epoch(train) [2][ 140/1563]  lr: 1.0000e-03  eta: 0:06:07  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.9340
11/22 16:45:41 - mmengine - INFO - Epoch(train) [2][ 150/1563]  lr: 1.0000e-03  eta: 0:06:06  time: 0.0516  data_time: 0.0136  memory: 382  loss: 1.8404
11/22 16:45:42 - mmengine - INFO - Epoch(train) [2][ 160/1563]  lr: 1.0000e-03  eta: 0:06:05  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.8404
11/22 16:45:42 - mmengine - INFO - Epoch(train) [2][ 170/1563]  lr: 1.0000e-03  eta: 0:06:04  time: 0.0515  data_time: 0.0136  memory: 382  loss: 1.8419
11/22 16:45:43 - mmengine - INFO - Epoch(train) [2][ 180/1563]  lr: 1.0000e-03  eta: 0:06:03  time: 0.0512  data_time: 0.0133  memory: 382  loss: 1.8487
11/22 16:45:43 - mmengine - INFO - Epoch(train) [2][ 190/1563]  lr: 1.0000e-03  eta: 0:06:03  time: 0.0517  data_time: 0.0137  memory: 382  loss: 1.8069
11/22 16:45:44 - mmengine - INFO - Epoch(train) [2][ 200/1563]  lr: 1.0000e-03  eta: 0:06:02  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.9490
11/22 16:45:44 - mmengine - INFO - Epoch(train) [2][ 210/1563]  lr: 1.0000e-03  eta: 0:06:01  time: 0.0518  data_time: 0.0135  memory: 382  loss: 2.0255
11/22 16:45:45 - mmengine - INFO - Epoch(train) [2][ 220/1563]  lr: 1.0000e-03  eta: 0:06:00  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.8988
11/22 16:45:45 - mmengine - INFO - Epoch(train) [2][ 230/1563]  lr: 1.0000e-03  eta: 0:05:59  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.9589
11/22 16:45:46 - mmengine - INFO - Epoch(train) [2][ 240/1563]  lr: 1.0000e-03  eta: 0:05:58  time: 0.0513  data_time: 0.0135  memory: 382  loss: 1.9171
11/22 16:45:46 - mmengine - INFO - Epoch(train) [2][ 250/1563]  lr: 1.0000e-03  eta: 0:05:57  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.9336
11/22 16:45:47 - mmengine - INFO - Epoch(train) [2][ 260/1563]  lr: 1.0000e-03  eta: 0:05:56  time: 0.0515  data_time: 0.0136  memory: 382  loss: 1.9064
11/22 16:45:47 - mmengine - INFO - Epoch(train) [2][ 270/1563]  lr: 1.0000e-03  eta: 0:05:56  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.8528
11/22 16:45:48 - mmengine - INFO - Epoch(train) [2][ 280/1563]  lr: 1.0000e-03  eta: 0:05:55  time: 0.0519  data_time: 0.0138  memory: 382  loss: 1.9756
11/22 16:45:49 - mmengine - INFO - Epoch(train) [2][ 290/1563]  lr: 1.0000e-03  eta: 0:05:54  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.8577
11/22 16:45:49 - mmengine - INFO - Epoch(train) [2][ 300/1563]  lr: 1.0000e-03  eta: 0:05:53  time: 0.0509  data_time: 0.0133  memory: 382  loss: 1.7939
11/22 16:45:50 - mmengine - INFO - Epoch(train) [2][ 310/1563]  lr: 1.0000e-03  eta: 0:05:52  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.8862
11/22 16:45:50 - mmengine - INFO - Epoch(train) [2][ 320/1563]  lr: 1.0000e-03  eta: 0:05:51  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.8484
11/22 16:45:51 - mmengine - INFO - Epoch(train) [2][ 330/1563]  lr: 1.0000e-03  eta: 0:05:50  time: 0.0519  data_time: 0.0137  memory: 382  loss: 1.8681
11/22 16:45:51 - mmengine - INFO - Epoch(train) [2][ 340/1563]  lr: 1.0000e-03  eta: 0:05:50  time: 0.0526  data_time: 0.0140  memory: 382  loss: 1.9015
11/22 16:45:52 - mmengine - INFO - Epoch(train) [2][ 350/1563]  lr: 1.0000e-03  eta: 0:05:49  time: 0.0515  data_time: 0.0136  memory: 382  loss: 1.8918
11/22 16:45:52 - mmengine - INFO - Epoch(train) [2][ 360/1563]  lr: 1.0000e-03  eta: 0:05:48  time: 0.0516  data_time: 0.0135  memory: 382  loss: 2.0049
11/22 16:45:53 - mmengine - INFO - Epoch(train) [2][ 370/1563]  lr: 1.0000e-03  eta: 0:05:47  time: 0.0512  data_time: 0.0134  memory: 382  loss: 1.8901
11/22 16:45:53 - mmengine - INFO - Epoch(train) [2][ 380/1563]  lr: 1.0000e-03  eta: 0:05:46  time: 0.0515  data_time: 0.0137  memory: 382  loss: 1.9105
11/22 16:45:54 - mmengine - INFO - Epoch(train) [2][ 390/1563]  lr: 1.0000e-03  eta: 0:05:46  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.8478
11/22 16:45:54 - mmengine - INFO - Epoch(train) [2][ 400/1563]  lr: 1.0000e-03  eta: 0:05:45  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.8279
11/22 16:45:55 - mmengine - INFO - Epoch(train) [2][ 410/1563]  lr: 1.0000e-03  eta: 0:05:44  time: 0.0512  data_time: 0.0135  memory: 382  loss: 1.8644
11/22 16:45:55 - mmengine - INFO - Epoch(train) [2][ 420/1563]  lr: 1.0000e-03  eta: 0:05:43  time: 0.0511  data_time: 0.0137  memory: 382  loss: 1.9658
11/22 16:45:56 - mmengine - INFO - Epoch(train) [2][ 430/1563]  lr: 1.0000e-03  eta: 0:05:42  time: 0.0532  data_time: 0.0141  memory: 382  loss: 1.7715
11/22 16:45:56 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:45:56 - mmengine - INFO - Epoch(train) [2][ 440/1563]  lr: 1.0000e-03  eta: 0:05:42  time: 0.0521  data_time: 0.0140  memory: 382  loss: 2.0089
11/22 16:45:57 - mmengine - INFO - Epoch(train) [2][ 450/1563]  lr: 1.0000e-03  eta: 0:05:41  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.7780
11/22 16:45:57 - mmengine - INFO - Epoch(train) [2][ 460/1563]  lr: 1.0000e-03  eta: 0:05:40  time: 0.0516  data_time: 0.0136  memory: 382  loss: 1.7803
11/22 16:45:58 - mmengine - INFO - Epoch(train) [2][ 470/1563]  lr: 1.0000e-03  eta: 0:05:39  time: 0.0519  data_time: 0.0137  memory: 382  loss: 1.8877
11/22 16:45:58 - mmengine - INFO - Epoch(train) [2][ 480/1563]  lr: 1.0000e-03  eta: 0:05:38  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.9322
11/22 16:45:59 - mmengine - INFO - Epoch(train) [2][ 490/1563]  lr: 1.0000e-03  eta: 0:05:38  time: 0.0518  data_time: 0.0137  memory: 382  loss: 1.8556
11/22 16:45:59 - mmengine - INFO - Epoch(train) [2][ 500/1563]  lr: 1.0000e-03  eta: 0:05:37  time: 0.0523  data_time: 0.0140  memory: 382  loss: 1.7696
11/22 16:46:00 - mmengine - INFO - Epoch(train) [2][ 510/1563]  lr: 1.0000e-03  eta: 0:05:36  time: 0.0543  data_time: 0.0145  memory: 382  loss: 1.7981
11/22 16:46:00 - mmengine - INFO - Epoch(train) [2][ 520/1563]  lr: 1.0000e-03  eta: 0:05:35  time: 0.0560  data_time: 0.0145  memory: 382  loss: 1.7619
11/22 16:46:01 - mmengine - INFO - Epoch(train) [2][ 530/1563]  lr: 1.0000e-03  eta: 0:05:35  time: 0.0561  data_time: 0.0145  memory: 382  loss: 1.9445
11/22 16:46:02 - mmengine - INFO - Epoch(train) [2][ 540/1563]  lr: 1.0000e-03  eta: 0:05:34  time: 0.0560  data_time: 0.0144  memory: 382  loss: 1.9609
11/22 16:46:02 - mmengine - INFO - Epoch(train) [2][ 550/1563]  lr: 1.0000e-03  eta: 0:05:34  time: 0.0556  data_time: 0.0145  memory: 382  loss: 1.8829
11/22 16:46:03 - mmengine - INFO - Epoch(train) [2][ 560/1563]  lr: 1.0000e-03  eta: 0:05:33  time: 0.0556  data_time: 0.0144  memory: 382  loss: 1.7553
11/22 16:46:03 - mmengine - INFO - Epoch(train) [2][ 570/1563]  lr: 1.0000e-03  eta: 0:05:32  time: 0.0546  data_time: 0.0140  memory: 382  loss: 1.8695
11/22 16:46:04 - mmengine - INFO - Epoch(train) [2][ 580/1563]  lr: 1.0000e-03  eta: 0:05:31  time: 0.0535  data_time: 0.0136  memory: 382  loss: 1.9100
11/22 16:46:04 - mmengine - INFO - Epoch(train) [2][ 590/1563]  lr: 1.0000e-03  eta: 0:05:31  time: 0.0526  data_time: 0.0136  memory: 382  loss: 1.8179
11/22 16:46:05 - mmengine - INFO - Epoch(train) [2][ 600/1563]  lr: 1.0000e-03  eta: 0:05:30  time: 0.0518  data_time: 0.0137  memory: 382  loss: 1.7467
11/22 16:46:05 - mmengine - INFO - Epoch(train) [2][ 610/1563]  lr: 1.0000e-03  eta: 0:05:29  time: 0.0517  data_time: 0.0137  memory: 382  loss: 1.9133
11/22 16:46:06 - mmengine - INFO - Epoch(train) [2][ 620/1563]  lr: 1.0000e-03  eta: 0:05:28  time: 0.0524  data_time: 0.0140  memory: 382  loss: 1.8832
11/22 16:46:06 - mmengine - INFO - Epoch(train) [2][ 630/1563]  lr: 1.0000e-03  eta: 0:05:28  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.8295
11/22 16:46:07 - mmengine - INFO - Epoch(train) [2][ 640/1563]  lr: 1.0000e-03  eta: 0:05:27  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.7728
11/22 16:46:07 - mmengine - INFO - Epoch(train) [2][ 650/1563]  lr: 1.0000e-03  eta: 0:05:26  time: 0.0516  data_time: 0.0136  memory: 382  loss: 1.8678
11/22 16:46:08 - mmengine - INFO - Epoch(train) [2][ 660/1563]  lr: 1.0000e-03  eta: 0:05:25  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.7402
11/22 16:46:08 - mmengine - INFO - Epoch(train) [2][ 670/1563]  lr: 1.0000e-03  eta: 0:05:25  time: 0.0513  data_time: 0.0134  memory: 382  loss: 1.8371
11/22 16:46:09 - mmengine - INFO - Epoch(train) [2][ 680/1563]  lr: 1.0000e-03  eta: 0:05:24  time: 0.0529  data_time: 0.0141  memory: 382  loss: 1.8069
11/22 16:46:10 - mmengine - INFO - Epoch(train) [2][ 690/1563]  lr: 1.0000e-03  eta: 0:05:23  time: 0.0518  data_time: 0.0133  memory: 382  loss: 1.8423
11/22 16:46:10 - mmengine - INFO - Epoch(train) [2][ 700/1563]  lr: 1.0000e-03  eta: 0:05:22  time: 0.0518  data_time: 0.0137  memory: 382  loss: 1.7003
11/22 16:46:11 - mmengine - INFO - Epoch(train) [2][ 710/1563]  lr: 1.0000e-03  eta: 0:05:22  time: 0.0513  data_time: 0.0138  memory: 382  loss: 1.7592
11/22 16:46:11 - mmengine - INFO - Epoch(train) [2][ 720/1563]  lr: 1.0000e-03  eta: 0:05:21  time: 0.0513  data_time: 0.0136  memory: 382  loss: 1.7464
11/22 16:46:12 - mmengine - INFO - Epoch(train) [2][ 730/1563]  lr: 1.0000e-03  eta: 0:05:20  time: 0.0511  data_time: 0.0134  memory: 382  loss: 1.7989
11/22 16:46:12 - mmengine - INFO - Epoch(train) [2][ 740/1563]  lr: 1.0000e-03  eta: 0:05:19  time: 0.0509  data_time: 0.0135  memory: 382  loss: 1.8442
11/22 16:46:13 - mmengine - INFO - Epoch(train) [2][ 750/1563]  lr: 1.0000e-03  eta: 0:05:19  time: 0.0508  data_time: 0.0135  memory: 382  loss: 1.7362
11/22 16:46:13 - mmengine - INFO - Epoch(train) [2][ 760/1563]  lr: 1.0000e-03  eta: 0:05:18  time: 0.0522  data_time: 0.0135  memory: 382  loss: 1.8073
11/22 16:46:14 - mmengine - INFO - Epoch(train) [2][ 770/1563]  lr: 1.0000e-03  eta: 0:05:17  time: 0.0522  data_time: 0.0135  memory: 382  loss: 1.7809
11/22 16:46:14 - mmengine - INFO - Epoch(train) [2][ 780/1563]  lr: 1.0000e-03  eta: 0:05:17  time: 0.0523  data_time: 0.0136  memory: 382  loss: 1.7341
11/22 16:46:15 - mmengine - INFO - Epoch(train) [2][ 790/1563]  lr: 1.0000e-03  eta: 0:05:16  time: 0.0533  data_time: 0.0138  memory: 382  loss: 1.7854
11/22 16:46:15 - mmengine - INFO - Epoch(train) [2][ 800/1563]  lr: 1.0000e-03  eta: 0:05:15  time: 0.0528  data_time: 0.0137  memory: 382  loss: 1.8100
11/22 16:46:16 - mmengine - INFO - Epoch(train) [2][ 810/1563]  lr: 1.0000e-03  eta: 0:05:14  time: 0.0531  data_time: 0.0137  memory: 382  loss: 1.9313
11/22 16:46:16 - mmengine - INFO - Epoch(train) [2][ 820/1563]  lr: 1.0000e-03  eta: 0:05:14  time: 0.0531  data_time: 0.0138  memory: 382  loss: 1.8791
11/22 16:46:17 - mmengine - INFO - Epoch(train) [2][ 830/1563]  lr: 1.0000e-03  eta: 0:05:13  time: 0.0528  data_time: 0.0138  memory: 382  loss: 1.7162
11/22 16:46:17 - mmengine - INFO - Epoch(train) [2][ 840/1563]  lr: 1.0000e-03  eta: 0:05:12  time: 0.0526  data_time: 0.0135  memory: 382  loss: 1.9569
11/22 16:46:18 - mmengine - INFO - Epoch(train) [2][ 850/1563]  lr: 1.0000e-03  eta: 0:05:12  time: 0.0526  data_time: 0.0135  memory: 382  loss: 1.8267
11/22 16:46:18 - mmengine - INFO - Epoch(train) [2][ 860/1563]  lr: 1.0000e-03  eta: 0:05:11  time: 0.0527  data_time: 0.0135  memory: 382  loss: 1.7703
11/22 16:46:19 - mmengine - INFO - Epoch(train) [2][ 870/1563]  lr: 1.0000e-03  eta: 0:05:10  time: 0.0525  data_time: 0.0135  memory: 382  loss: 1.8052
11/22 16:46:19 - mmengine - INFO - Epoch(train) [2][ 880/1563]  lr: 1.0000e-03  eta: 0:05:10  time: 0.0490  data_time: 0.0138  memory: 382  loss: 1.8631
11/22 16:46:20 - mmengine - INFO - Epoch(train) [2][ 890/1563]  lr: 1.0000e-03  eta: 0:05:09  time: 0.0516  data_time: 0.0138  memory: 382  loss: 1.8815
11/22 16:46:20 - mmengine - INFO - Epoch(train) [2][ 900/1563]  lr: 1.0000e-03  eta: 0:05:08  time: 0.0465  data_time: 0.0137  memory: 382  loss: 1.8250
11/22 16:46:21 - mmengine - INFO - Epoch(train) [2][ 910/1563]  lr: 1.0000e-03  eta: 0:05:07  time: 0.0518  data_time: 0.0138  memory: 382  loss: 1.7385
11/22 16:46:21 - mmengine - INFO - Epoch(train) [2][ 920/1563]  lr: 1.0000e-03  eta: 0:05:07  time: 0.0515  data_time: 0.0137  memory: 382  loss: 1.8195
11/22 16:46:22 - mmengine - INFO - Epoch(train) [2][ 930/1563]  lr: 1.0000e-03  eta: 0:05:06  time: 0.0518  data_time: 0.0137  memory: 382  loss: 1.7355
11/22 16:46:22 - mmengine - INFO - Epoch(train) [2][ 940/1563]  lr: 1.0000e-03  eta: 0:05:05  time: 0.0512  data_time: 0.0135  memory: 382  loss: 1.8352
11/22 16:46:23 - mmengine - INFO - Epoch(train) [2][ 950/1563]  lr: 1.0000e-03  eta: 0:05:04  time: 0.0513  data_time: 0.0136  memory: 382  loss: 1.9294
11/22 16:46:23 - mmengine - INFO - Epoch(train) [2][ 960/1563]  lr: 1.0000e-03  eta: 0:05:04  time: 0.0523  data_time: 0.0138  memory: 382  loss: 1.6733
11/22 16:46:24 - mmengine - INFO - Epoch(train) [2][ 970/1563]  lr: 1.0000e-03  eta: 0:05:03  time: 0.0518  data_time: 0.0138  memory: 382  loss: 1.7458
11/22 16:46:25 - mmengine - INFO - Epoch(train) [2][ 980/1563]  lr: 1.0000e-03  eta: 0:05:02  time: 0.0512  data_time: 0.0135  memory: 382  loss: 1.7601
11/22 16:46:25 - mmengine - INFO - Epoch(train) [2][ 990/1563]  lr: 1.0000e-03  eta: 0:05:02  time: 0.0514  data_time: 0.0136  memory: 382  loss: 1.8750
11/22 16:46:26 - mmengine - INFO - Epoch(train) [2][1000/1563]  lr: 1.0000e-03  eta: 0:05:01  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.7647
11/22 16:46:26 - mmengine - INFO - Epoch(train) [2][1010/1563]  lr: 1.0000e-03  eta: 0:05:00  time: 0.0531  data_time: 0.0145  memory: 382  loss: 1.7641
11/22 16:46:27 - mmengine - INFO - Epoch(train) [2][1020/1563]  lr: 1.0000e-03  eta: 0:05:00  time: 0.0512  data_time: 0.0135  memory: 382  loss: 1.6066
11/22 16:46:27 - mmengine - INFO - Epoch(train) [2][1030/1563]  lr: 1.0000e-03  eta: 0:04:59  time: 0.0514  data_time: 0.0136  memory: 382  loss: 1.8534
11/22 16:46:28 - mmengine - INFO - Epoch(train) [2][1040/1563]  lr: 1.0000e-03  eta: 0:04:58  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.7043
11/22 16:46:28 - mmengine - INFO - Epoch(train) [2][1050/1563]  lr: 1.0000e-03  eta: 0:04:58  time: 0.0514  data_time: 0.0136  memory: 382  loss: 1.6900
11/22 16:46:29 - mmengine - INFO - Epoch(train) [2][1060/1563]  lr: 1.0000e-03  eta: 0:04:57  time: 0.0512  data_time: 0.0134  memory: 382  loss: 1.7221
11/22 16:46:29 - mmengine - INFO - Epoch(train) [2][1070/1563]  lr: 1.0000e-03  eta: 0:04:56  time: 0.0516  data_time: 0.0137  memory: 382  loss: 1.6914
11/22 16:46:30 - mmengine - INFO - Epoch(train) [2][1080/1563]  lr: 1.0000e-03  eta: 0:04:56  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.7516
11/22 16:46:30 - mmengine - INFO - Epoch(train) [2][1090/1563]  lr: 1.0000e-03  eta: 0:04:55  time: 0.0518  data_time: 0.0137  memory: 382  loss: 1.7626
11/22 16:46:31 - mmengine - INFO - Epoch(train) [2][1100/1563]  lr: 1.0000e-03  eta: 0:04:54  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.6875
11/22 16:46:31 - mmengine - INFO - Epoch(train) [2][1110/1563]  lr: 1.0000e-03  eta: 0:04:54  time: 0.0556  data_time: 0.0146  memory: 382  loss: 1.8314
11/22 16:46:32 - mmengine - INFO - Epoch(train) [2][1120/1563]  lr: 1.0000e-03  eta: 0:04:53  time: 0.0554  data_time: 0.0143  memory: 382  loss: 1.7458
11/22 16:46:32 - mmengine - INFO - Epoch(train) [2][1130/1563]  lr: 1.0000e-03  eta: 0:04:52  time: 0.0555  data_time: 0.0144  memory: 382  loss: 1.7342
11/22 16:46:33 - mmengine - INFO - Epoch(train) [2][1140/1563]  lr: 1.0000e-03  eta: 0:04:52  time: 0.0558  data_time: 0.0145  memory: 382  loss: 1.8697
11/22 16:46:34 - mmengine - INFO - Epoch(train) [2][1150/1563]  lr: 1.0000e-03  eta: 0:04:51  time: 0.0594  data_time: 0.0162  memory: 382  loss: 1.8513
11/22 16:46:34 - mmengine - INFO - Epoch(train) [2][1160/1563]  lr: 1.0000e-03  eta: 0:04:51  time: 0.0596  data_time: 0.0161  memory: 382  loss: 1.7320
11/22 16:46:35 - mmengine - INFO - Epoch(train) [2][1170/1563]  lr: 1.0000e-03  eta: 0:04:50  time: 0.0583  data_time: 0.0160  memory: 382  loss: 1.7382
11/22 16:46:35 - mmengine - INFO - Epoch(train) [2][1180/1563]  lr: 1.0000e-03  eta: 0:04:50  time: 0.0582  data_time: 0.0160  memory: 382  loss: 1.6267
11/22 16:46:36 - mmengine - INFO - Epoch(train) [2][1190/1563]  lr: 1.0000e-03  eta: 0:04:49  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.8052
11/22 16:46:36 - mmengine - INFO - Epoch(train) [2][1200/1563]  lr: 1.0000e-03  eta: 0:04:48  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.8120
11/22 16:46:37 - mmengine - INFO - Epoch(train) [2][1210/1563]  lr: 1.0000e-03  eta: 0:04:48  time: 0.0561  data_time: 0.0159  memory: 382  loss: 1.7501
11/22 16:46:38 - mmengine - INFO - Epoch(train) [2][1220/1563]  lr: 1.0000e-03  eta: 0:04:47  time: 0.0559  data_time: 0.0158  memory: 382  loss: 1.8753
11/22 16:46:38 - mmengine - INFO - Epoch(train) [2][1230/1563]  lr: 1.0000e-03  eta: 0:04:47  time: 0.0580  data_time: 0.0159  memory: 382  loss: 1.8064
11/22 16:46:39 - mmengine - INFO - Epoch(train) [2][1240/1563]  lr: 1.0000e-03  eta: 0:04:46  time: 0.0582  data_time: 0.0159  memory: 382  loss: 1.7679
11/22 16:46:39 - mmengine - INFO - Epoch(train) [2][1250/1563]  lr: 1.0000e-03  eta: 0:04:46  time: 0.0569  data_time: 0.0159  memory: 382  loss: 1.7150
11/22 16:46:40 - mmengine - INFO - Epoch(train) [2][1260/1563]  lr: 1.0000e-03  eta: 0:04:45  time: 0.0585  data_time: 0.0160  memory: 382  loss: 1.7895
11/22 16:46:40 - mmengine - INFO - Epoch(train) [2][1270/1563]  lr: 1.0000e-03  eta: 0:04:44  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.7520
11/22 16:46:41 - mmengine - INFO - Epoch(train) [2][1280/1563]  lr: 1.0000e-03  eta: 0:04:44  time: 0.0582  data_time: 0.0160  memory: 382  loss: 1.6606
11/22 16:46:42 - mmengine - INFO - Epoch(train) [2][1290/1563]  lr: 1.0000e-03  eta: 0:04:43  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.6303
11/22 16:46:42 - mmengine - INFO - Epoch(train) [2][1300/1563]  lr: 1.0000e-03  eta: 0:04:43  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.8094
11/22 16:46:43 - mmengine - INFO - Epoch(train) [2][1310/1563]  lr: 1.0000e-03  eta: 0:04:42  time: 0.0582  data_time: 0.0160  memory: 382  loss: 1.7696
11/22 16:46:43 - mmengine - INFO - Epoch(train) [2][1320/1563]  lr: 1.0000e-03  eta: 0:04:42  time: 0.0581  data_time: 0.0159  memory: 382  loss: 1.8476
11/22 16:46:44 - mmengine - INFO - Epoch(train) [2][1330/1563]  lr: 1.0000e-03  eta: 0:04:41  time: 0.0581  data_time: 0.0159  memory: 382  loss: 1.7991
11/22 16:46:45 - mmengine - INFO - Epoch(train) [2][1340/1563]  lr: 1.0000e-03  eta: 0:04:41  time: 0.0581  data_time: 0.0159  memory: 382  loss: 1.7261
11/22 16:46:45 - mmengine - INFO - Epoch(train) [2][1350/1563]  lr: 1.0000e-03  eta: 0:04:40  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.7103
11/22 16:46:46 - mmengine - INFO - Epoch(train) [2][1360/1563]  lr: 1.0000e-03  eta: 0:04:39  time: 0.0580  data_time: 0.0159  memory: 382  loss: 1.7356
11/22 16:46:46 - mmengine - INFO - Epoch(train) [2][1370/1563]  lr: 1.0000e-03  eta: 0:04:39  time: 0.0581  data_time: 0.0158  memory: 382  loss: 1.8153
11/22 16:46:47 - mmengine - INFO - Epoch(train) [2][1380/1563]  lr: 1.0000e-03  eta: 0:04:38  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.7560
11/22 16:46:47 - mmengine - INFO - Epoch(train) [2][1390/1563]  lr: 1.0000e-03  eta: 0:04:38  time: 0.0580  data_time: 0.0158  memory: 382  loss: 1.6897
11/22 16:46:48 - mmengine - INFO - Epoch(train) [2][1400/1563]  lr: 1.0000e-03  eta: 0:04:37  time: 0.0570  data_time: 0.0158  memory: 382  loss: 1.7431
11/22 16:46:49 - mmengine - INFO - Epoch(train) [2][1410/1563]  lr: 1.0000e-03  eta: 0:04:37  time: 0.0551  data_time: 0.0160  memory: 382  loss: 1.7052
11/22 16:46:49 - mmengine - INFO - Epoch(train) [2][1420/1563]  lr: 1.0000e-03  eta: 0:04:36  time: 0.0578  data_time: 0.0159  memory: 382  loss: 1.7328
11/22 16:46:50 - mmengine - INFO - Epoch(train) [2][1430/1563]  lr: 1.0000e-03  eta: 0:04:35  time: 0.0580  data_time: 0.0159  memory: 382  loss: 1.7698
11/22 16:46:50 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:46:50 - mmengine - INFO - Epoch(train) [2][1440/1563]  lr: 1.0000e-03  eta: 0:04:35  time: 0.0542  data_time: 0.0161  memory: 382  loss: 1.7988
11/22 16:46:51 - mmengine - INFO - Epoch(train) [2][1450/1563]  lr: 1.0000e-03  eta: 0:04:34  time: 0.0565  data_time: 0.0157  memory: 382  loss: 1.8104
11/22 16:46:51 - mmengine - INFO - Epoch(train) [2][1460/1563]  lr: 1.0000e-03  eta: 0:04:34  time: 0.0577  data_time: 0.0158  memory: 382  loss: 1.8345
11/22 16:46:52 - mmengine - INFO - Epoch(train) [2][1470/1563]  lr: 1.0000e-03  eta: 0:04:33  time: 0.0581  data_time: 0.0160  memory: 382  loss: 1.8332
11/22 16:46:53 - mmengine - INFO - Epoch(train) [2][1480/1563]  lr: 1.0000e-03  eta: 0:04:33  time: 0.0578  data_time: 0.0158  memory: 382  loss: 1.5920
11/22 16:46:53 - mmengine - INFO - Epoch(train) [2][1490/1563]  lr: 1.0000e-03  eta: 0:04:32  time: 0.0579  data_time: 0.0159  memory: 382  loss: 1.8411
11/22 16:46:54 - mmengine - INFO - Epoch(train) [2][1500/1563]  lr: 1.0000e-03  eta: 0:04:31  time: 0.0579  data_time: 0.0158  memory: 382  loss: 1.6966
11/22 16:46:54 - mmengine - INFO - Epoch(train) [2][1510/1563]  lr: 1.0000e-03  eta: 0:04:31  time: 0.0580  data_time: 0.0159  memory: 382  loss: 1.7776
11/22 16:46:55 - mmengine - INFO - Epoch(train) [2][1520/1563]  lr: 1.0000e-03  eta: 0:04:30  time: 0.0566  data_time: 0.0159  memory: 382  loss: 1.7656
11/22 16:46:55 - mmengine - INFO - Epoch(train) [2][1530/1563]  lr: 1.0000e-03  eta: 0:04:30  time: 0.0554  data_time: 0.0158  memory: 382  loss: 1.7661
11/22 16:46:56 - mmengine - INFO - Epoch(train) [2][1540/1563]  lr: 1.0000e-03  eta: 0:04:29  time: 0.0571  data_time: 0.0159  memory: 382  loss: 1.7557
11/22 16:46:57 - mmengine - INFO - Epoch(train) [2][1550/1563]  lr: 1.0000e-03  eta: 0:04:29  time: 0.0578  data_time: 0.0159  memory: 382  loss: 1.7437
11/22 16:46:57 - mmengine - INFO - Epoch(train) [2][1560/1563]  lr: 1.0000e-03  eta: 0:04:28  time: 0.0576  data_time: 0.0158  memory: 382  loss: 1.7960
11/22 16:46:57 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:46:57 - mmengine - INFO - Saving checkpoint at 2 epochs
11/22 16:46:58 - mmengine - INFO - Epoch(val) [2][ 10/313]    eta: 0:00:06  time: 0.0222  data_time: 0.0117  memory: 382  
11/22 16:46:58 - mmengine - INFO - Epoch(val) [2][ 20/313]    eta: 0:00:06  time: 0.0193  data_time: 0.0095  memory: 225  
11/22 16:46:59 - mmengine - INFO - Epoch(val) [2][ 30/313]    eta: 0:00:05  time: 0.0174  data_time: 0.0086  memory: 225  
11/22 16:46:59 - mmengine - INFO - Epoch(val) [2][ 40/313]    eta: 0:00:05  time: 0.0175  data_time: 0.0087  memory: 225  
11/22 16:46:59 - mmengine - INFO - Epoch(val) [2][ 50/313]    eta: 0:00:04  time: 0.0174  data_time: 0.0086  memory: 225  
11/22 16:46:59 - mmengine - INFO - Epoch(val) [2][ 60/313]    eta: 0:00:04  time: 0.0176  data_time: 0.0087  memory: 225  
11/22 16:46:59 - mmengine - INFO - Epoch(val) [2][ 70/313]    eta: 0:00:04  time: 0.0176  data_time: 0.0086  memory: 225  
11/22 16:46:59 - mmengine - INFO - Epoch(val) [2][ 80/313]    eta: 0:00:04  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:00 - mmengine - INFO - Epoch(val) [2][ 90/313]    eta: 0:00:04  time: 0.0175  data_time: 0.0087  memory: 225  
11/22 16:47:00 - mmengine - INFO - Epoch(val) [2][100/313]    eta: 0:00:03  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:00 - mmengine - INFO - Epoch(val) [2][110/313]    eta: 0:00:03  time: 0.0176  data_time: 0.0087  memory: 225  
11/22 16:47:00 - mmengine - INFO - Epoch(val) [2][120/313]    eta: 0:00:03  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:00 - mmengine - INFO - Epoch(val) [2][130/313]    eta: 0:00:03  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:01 - mmengine - INFO - Epoch(val) [2][140/313]    eta: 0:00:03  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:01 - mmengine - INFO - Epoch(val) [2][150/313]    eta: 0:00:02  time: 0.0176  data_time: 0.0087  memory: 225  
11/22 16:47:01 - mmengine - INFO - Epoch(val) [2][160/313]    eta: 0:00:02  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:01 - mmengine - INFO - Epoch(val) [2][170/313]    eta: 0:00:02  time: 0.0176  data_time: 0.0087  memory: 225  
11/22 16:47:01 - mmengine - INFO - Epoch(val) [2][180/313]    eta: 0:00:02  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:01 - mmengine - INFO - Epoch(val) [2][190/313]    eta: 0:00:02  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:02 - mmengine - INFO - Epoch(val) [2][200/313]    eta: 0:00:02  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:02 - mmengine - INFO - Epoch(val) [2][210/313]    eta: 0:00:01  time: 0.0179  data_time: 0.0088  memory: 225  
11/22 16:47:02 - mmengine - INFO - Epoch(val) [2][220/313]    eta: 0:00:01  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:02 - mmengine - INFO - Epoch(val) [2][230/313]    eta: 0:00:01  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:02 - mmengine - INFO - Epoch(val) [2][240/313]    eta: 0:00:01  time: 0.0175  data_time: 0.0086  memory: 225  
11/22 16:47:02 - mmengine - INFO - Epoch(val) [2][250/313]    eta: 0:00:01  time: 0.0174  data_time: 0.0086  memory: 225  
11/22 16:47:03 - mmengine - INFO - Epoch(val) [2][260/313]    eta: 0:00:00  time: 0.0174  data_time: 0.0086  memory: 225  
11/22 16:47:03 - mmengine - INFO - Epoch(val) [2][270/313]    eta: 0:00:00  time: 0.0177  data_time: 0.0087  memory: 225  
11/22 16:47:03 - mmengine - INFO - Epoch(val) [2][280/313]    eta: 0:00:00  time: 0.0175  data_time: 0.0087  memory: 225  
11/22 16:47:03 - mmengine - INFO - Epoch(val) [2][290/313]    eta: 0:00:00  time: 0.0177  data_time: 0.0087  memory: 225  
11/22 16:47:03 - mmengine - INFO - Epoch(val) [2][300/313]    eta: 0:00:00  time: 0.0176  data_time: 0.0087  memory: 225  
11/22 16:47:04 - mmengine - INFO - Epoch(val) [2][310/313]    eta: 0:00:00  time: 0.0176  data_time: 0.0087  memory: 225  
11/22 16:47:04 - mmengine - INFO - Epoch(val) [2][313/313]    accuracy: 43.0900  data_time: 0.0087  time: 0.0177
11/22 16:47:04 - mmengine - INFO - Epoch(train) [3][  10/1563]  lr: 1.0000e-03  eta: 0:04:27  time: 0.0536  data_time: 0.0138  memory: 382  loss: 1.7544
11/22 16:47:05 - mmengine - INFO - Epoch(train) [3][  20/1563]  lr: 1.0000e-03  eta: 0:04:27  time: 0.0531  data_time: 0.0136  memory: 382  loss: 1.8709
11/22 16:47:05 - mmengine - INFO - Epoch(train) [3][  30/1563]  lr: 1.0000e-03  eta: 0:04:26  time: 0.0539  data_time: 0.0140  memory: 382  loss: 1.7736
11/22 16:47:06 - mmengine - INFO - Epoch(train) [3][  40/1563]  lr: 1.0000e-03  eta: 0:04:25  time: 0.0540  data_time: 0.0140  memory: 382  loss: 1.7101
11/22 16:47:06 - mmengine - INFO - Epoch(train) [3][  50/1563]  lr: 1.0000e-03  eta: 0:04:25  time: 0.0541  data_time: 0.0141  memory: 382  loss: 1.6691
11/22 16:47:07 - mmengine - INFO - Epoch(train) [3][  60/1563]  lr: 1.0000e-03  eta: 0:04:24  time: 0.0539  data_time: 0.0138  memory: 382  loss: 1.7272
11/22 16:47:07 - mmengine - INFO - Epoch(train) [3][  70/1563]  lr: 1.0000e-03  eta: 0:04:24  time: 0.0542  data_time: 0.0140  memory: 382  loss: 1.6619
11/22 16:47:08 - mmengine - INFO - Epoch(train) [3][  80/1563]  lr: 1.0000e-03  eta: 0:04:23  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.6607
11/22 16:47:08 - mmengine - INFO - Epoch(train) [3][  90/1563]  lr: 1.0000e-03  eta: 0:04:22  time: 0.0541  data_time: 0.0141  memory: 382  loss: 1.6077
11/22 16:47:09 - mmengine - INFO - Epoch(train) [3][ 100/1563]  lr: 1.0000e-03  eta: 0:04:22  time: 0.0541  data_time: 0.0140  memory: 382  loss: 1.6063
11/22 16:47:10 - mmengine - INFO - Epoch(train) [3][ 110/1563]  lr: 1.0000e-03  eta: 0:04:21  time: 0.0544  data_time: 0.0141  memory: 382  loss: 1.6782
11/22 16:47:10 - mmengine - INFO - Epoch(train) [3][ 120/1563]  lr: 1.0000e-03  eta: 0:04:20  time: 0.0549  data_time: 0.0143  memory: 382  loss: 1.8019
11/22 16:47:11 - mmengine - INFO - Epoch(train) [3][ 130/1563]  lr: 1.0000e-03  eta: 0:04:20  time: 0.0542  data_time: 0.0141  memory: 382  loss: 1.6718
11/22 16:47:11 - mmengine - INFO - Epoch(train) [3][ 140/1563]  lr: 1.0000e-03  eta: 0:04:19  time: 0.0520  data_time: 0.0144  memory: 382  loss: 1.6988
11/22 16:47:12 - mmengine - INFO - Epoch(train) [3][ 150/1563]  lr: 1.0000e-03  eta: 0:04:19  time: 0.0540  data_time: 0.0145  memory: 382  loss: 1.7076
11/22 16:47:12 - mmengine - INFO - Epoch(train) [3][ 160/1563]  lr: 1.0000e-03  eta: 0:04:18  time: 0.0562  data_time: 0.0147  memory: 382  loss: 1.6644
11/22 16:47:13 - mmengine - INFO - Epoch(train) [3][ 170/1563]  lr: 1.0000e-03  eta: 0:04:17  time: 0.0559  data_time: 0.0146  memory: 382  loss: 1.7423
11/22 16:47:13 - mmengine - INFO - Epoch(train) [3][ 180/1563]  lr: 1.0000e-03  eta: 0:04:17  time: 0.0535  data_time: 0.0147  memory: 382  loss: 1.6710
11/22 16:47:14 - mmengine - INFO - Epoch(train) [3][ 190/1563]  lr: 1.0000e-03  eta: 0:04:16  time: 0.0535  data_time: 0.0146  memory: 382  loss: 1.6126
11/22 16:47:14 - mmengine - INFO - Epoch(train) [3][ 200/1563]  lr: 1.0000e-03  eta: 0:04:16  time: 0.0534  data_time: 0.0143  memory: 382  loss: 1.7686
11/22 16:47:15 - mmengine - INFO - Epoch(train) [3][ 210/1563]  lr: 1.0000e-03  eta: 0:04:15  time: 0.0521  data_time: 0.0137  memory: 382  loss: 1.6462
11/22 16:47:15 - mmengine - INFO - Epoch(train) [3][ 220/1563]  lr: 1.0000e-03  eta: 0:04:14  time: 0.0525  data_time: 0.0138  memory: 382  loss: 1.6834
11/22 16:47:16 - mmengine - INFO - Epoch(train) [3][ 230/1563]  lr: 1.0000e-03  eta: 0:04:14  time: 0.0526  data_time: 0.0139  memory: 382  loss: 1.8183
11/22 16:47:16 - mmengine - INFO - Epoch(train) [3][ 240/1563]  lr: 1.0000e-03  eta: 0:04:13  time: 0.0533  data_time: 0.0143  memory: 382  loss: 1.5796
11/22 16:47:17 - mmengine - INFO - Epoch(train) [3][ 250/1563]  lr: 1.0000e-03  eta: 0:04:12  time: 0.0507  data_time: 0.0134  memory: 382  loss: 1.6061
11/22 16:47:18 - mmengine - INFO - Epoch(train) [3][ 260/1563]  lr: 1.0000e-03  eta: 0:04:12  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.7223
11/22 16:47:18 - mmengine - INFO - Epoch(train) [3][ 270/1563]  lr: 1.0000e-03  eta: 0:04:11  time: 0.0514  data_time: 0.0136  memory: 382  loss: 1.6142
11/22 16:47:19 - mmengine - INFO - Epoch(train) [3][ 280/1563]  lr: 1.0000e-03  eta: 0:04:10  time: 0.0514  data_time: 0.0136  memory: 382  loss: 1.6779
11/22 16:47:19 - mmengine - INFO - Epoch(train) [3][ 290/1563]  lr: 1.0000e-03  eta: 0:04:10  time: 0.0514  data_time: 0.0136  memory: 382  loss: 1.8518
11/22 16:47:20 - mmengine - INFO - Epoch(train) [3][ 300/1563]  lr: 1.0000e-03  eta: 0:04:09  time: 0.0530  data_time: 0.0138  memory: 382  loss: 1.6435
11/22 16:47:20 - mmengine - INFO - Epoch(train) [3][ 310/1563]  lr: 1.0000e-03  eta: 0:04:09  time: 0.0539  data_time: 0.0138  memory: 382  loss: 1.6019
11/22 16:47:21 - mmengine - INFO - Epoch(train) [3][ 320/1563]  lr: 1.0000e-03  eta: 0:04:08  time: 0.0532  data_time: 0.0137  memory: 382  loss: 1.6349
11/22 16:47:21 - mmengine - INFO - Epoch(train) [3][ 330/1563]  lr: 1.0000e-03  eta: 0:04:07  time: 0.0529  data_time: 0.0139  memory: 382  loss: 1.7829
11/22 16:47:22 - mmengine - INFO - Epoch(train) [3][ 340/1563]  lr: 1.0000e-03  eta: 0:04:07  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.7509
11/22 16:47:22 - mmengine - INFO - Epoch(train) [3][ 350/1563]  lr: 1.0000e-03  eta: 0:04:06  time: 0.0510  data_time: 0.0135  memory: 382  loss: 1.7433
11/22 16:47:23 - mmengine - INFO - Epoch(train) [3][ 360/1563]  lr: 1.0000e-03  eta: 0:04:05  time: 0.0516  data_time: 0.0137  memory: 382  loss: 1.6134
11/22 16:47:23 - mmengine - INFO - Epoch(train) [3][ 370/1563]  lr: 1.0000e-03  eta: 0:04:05  time: 0.0511  data_time: 0.0134  memory: 382  loss: 1.6078
11/22 16:47:24 - mmengine - INFO - Epoch(train) [3][ 380/1563]  lr: 1.0000e-03  eta: 0:04:04  time: 0.0510  data_time: 0.0135  memory: 382  loss: 1.6183
11/22 16:47:24 - mmengine - INFO - Epoch(train) [3][ 390/1563]  lr: 1.0000e-03  eta: 0:04:04  time: 0.0531  data_time: 0.0137  memory: 382  loss: 1.7506
11/22 16:47:25 - mmengine - INFO - Epoch(train) [3][ 400/1563]  lr: 1.0000e-03  eta: 0:04:03  time: 0.0531  data_time: 0.0136  memory: 382  loss: 1.7401
11/22 16:47:25 - mmengine - INFO - Epoch(train) [3][ 410/1563]  lr: 1.0000e-03  eta: 0:04:02  time: 0.0537  data_time: 0.0138  memory: 382  loss: 1.6120
11/22 16:47:26 - mmengine - INFO - Epoch(train) [3][ 420/1563]  lr: 1.0000e-03  eta: 0:04:02  time: 0.0532  data_time: 0.0136  memory: 382  loss: 1.7460
11/22 16:47:26 - mmengine - INFO - Epoch(train) [3][ 430/1563]  lr: 1.0000e-03  eta: 0:04:01  time: 0.0521  data_time: 0.0137  memory: 382  loss: 1.7638
11/22 16:47:27 - mmengine - INFO - Epoch(train) [3][ 440/1563]  lr: 1.0000e-03  eta: 0:04:00  time: 0.0511  data_time: 0.0138  memory: 382  loss: 1.6975
11/22 16:47:27 - mmengine - INFO - Epoch(train) [3][ 450/1563]  lr: 1.0000e-03  eta: 0:04:00  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.6568
11/22 16:47:28 - mmengine - INFO - Epoch(train) [3][ 460/1563]  lr: 1.0000e-03  eta: 0:03:59  time: 0.0531  data_time: 0.0137  memory: 382  loss: 1.7361
11/22 16:47:29 - mmengine - INFO - Epoch(train) [3][ 470/1563]  lr: 1.0000e-03  eta: 0:03:59  time: 0.0541  data_time: 0.0140  memory: 382  loss: 1.6191
11/22 16:47:29 - mmengine - INFO - Epoch(train) [3][ 480/1563]  lr: 1.0000e-03  eta: 0:03:58  time: 0.0539  data_time: 0.0140  memory: 382  loss: 1.6996
11/22 16:47:30 - mmengine - INFO - Epoch(train) [3][ 490/1563]  lr: 1.0000e-03  eta: 0:03:57  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.6323
11/22 16:47:30 - mmengine - INFO - Epoch(train) [3][ 500/1563]  lr: 1.0000e-03  eta: 0:03:57  time: 0.0539  data_time: 0.0139  memory: 382  loss: 1.6949
11/22 16:47:31 - mmengine - INFO - Epoch(train) [3][ 510/1563]  lr: 1.0000e-03  eta: 0:03:56  time: 0.0541  data_time: 0.0139  memory: 382  loss: 1.7518
11/22 16:47:31 - mmengine - INFO - Epoch(train) [3][ 520/1563]  lr: 1.0000e-03  eta: 0:03:56  time: 0.0538  data_time: 0.0138  memory: 382  loss: 1.7295
11/22 16:47:32 - mmengine - INFO - Epoch(train) [3][ 530/1563]  lr: 1.0000e-03  eta: 0:03:55  time: 0.0541  data_time: 0.0140  memory: 382  loss: 1.7763
11/22 16:47:32 - mmengine - INFO - Epoch(train) [3][ 540/1563]  lr: 1.0000e-03  eta: 0:03:54  time: 0.0539  data_time: 0.0139  memory: 382  loss: 1.6836
11/22 16:47:33 - mmengine - INFO - Epoch(train) [3][ 550/1563]  lr: 1.0000e-03  eta: 0:03:54  time: 0.0539  data_time: 0.0140  memory: 382  loss: 1.7488
11/22 16:47:33 - mmengine - INFO - Epoch(train) [3][ 560/1563]  lr: 1.0000e-03  eta: 0:03:53  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.6240
11/22 16:47:34 - mmengine - INFO - Epoch(train) [3][ 570/1563]  lr: 1.0000e-03  eta: 0:03:53  time: 0.0537  data_time: 0.0138  memory: 382  loss: 1.6455
11/22 16:47:34 - mmengine - INFO - Epoch(train) [3][ 580/1563]  lr: 1.0000e-03  eta: 0:03:52  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.8316
11/22 16:47:35 - mmengine - INFO - Epoch(train) [3][ 590/1563]  lr: 1.0000e-03  eta: 0:03:51  time: 0.0540  data_time: 0.0139  memory: 382  loss: 1.5671
11/22 16:47:36 - mmengine - INFO - Epoch(train) [3][ 600/1563]  lr: 1.0000e-03  eta: 0:03:51  time: 0.0538  data_time: 0.0138  memory: 382  loss: 1.7360
11/22 16:47:36 - mmengine - INFO - Epoch(train) [3][ 610/1563]  lr: 1.0000e-03  eta: 0:03:50  time: 0.0539  data_time: 0.0139  memory: 382  loss: 1.7328
11/22 16:47:37 - mmengine - INFO - Epoch(train) [3][ 620/1563]  lr: 1.0000e-03  eta: 0:03:50  time: 0.0539  data_time: 0.0140  memory: 382  loss: 1.6618
11/22 16:47:37 - mmengine - INFO - Epoch(train) [3][ 630/1563]  lr: 1.0000e-03  eta: 0:03:49  time: 0.0537  data_time: 0.0137  memory: 382  loss: 1.6549
11/22 16:47:38 - mmengine - INFO - Epoch(train) [3][ 640/1563]  lr: 1.0000e-03  eta: 0:03:48  time: 0.0536  data_time: 0.0138  memory: 382  loss: 1.7133
11/22 16:47:38 - mmengine - INFO - Epoch(train) [3][ 650/1563]  lr: 1.0000e-03  eta: 0:03:48  time: 0.0540  data_time: 0.0140  memory: 382  loss: 1.7738
11/22 16:47:39 - mmengine - INFO - Epoch(train) [3][ 660/1563]  lr: 1.0000e-03  eta: 0:03:47  time: 0.0546  data_time: 0.0141  memory: 382  loss: 1.7275
11/22 16:47:39 - mmengine - INFO - Epoch(train) [3][ 670/1563]  lr: 1.0000e-03  eta: 0:03:47  time: 0.0539  data_time: 0.0139  memory: 382  loss: 1.7047
11/22 16:47:40 - mmengine - INFO - Epoch(train) [3][ 680/1563]  lr: 1.0000e-03  eta: 0:03:46  time: 0.0532  data_time: 0.0140  memory: 382  loss: 1.6989
11/22 16:47:40 - mmengine - INFO - Epoch(train) [3][ 690/1563]  lr: 1.0000e-03  eta: 0:03:46  time: 0.0537  data_time: 0.0140  memory: 382  loss: 1.7081
11/22 16:47:41 - mmengine - INFO - Epoch(train) [3][ 700/1563]  lr: 1.0000e-03  eta: 0:03:45  time: 0.0541  data_time: 0.0139  memory: 382  loss: 1.5826
11/22 16:47:41 - mmengine - INFO - Epoch(train) [3][ 710/1563]  lr: 1.0000e-03  eta: 0:03:44  time: 0.0541  data_time: 0.0141  memory: 382  loss: 1.6385
11/22 16:47:42 - mmengine - INFO - Epoch(train) [3][ 720/1563]  lr: 1.0000e-03  eta: 0:03:44  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.6755
11/22 16:47:43 - mmengine - INFO - Epoch(train) [3][ 730/1563]  lr: 1.0000e-03  eta: 0:03:43  time: 0.0541  data_time: 0.0141  memory: 382  loss: 1.6512
11/22 16:47:43 - mmengine - INFO - Epoch(train) [3][ 740/1563]  lr: 1.0000e-03  eta: 0:03:43  time: 0.0540  data_time: 0.0140  memory: 382  loss: 1.7752
11/22 16:47:44 - mmengine - INFO - Epoch(train) [3][ 750/1563]  lr: 1.0000e-03  eta: 0:03:42  time: 0.0538  data_time: 0.0138  memory: 382  loss: 1.6108
11/22 16:47:44 - mmengine - INFO - Epoch(train) [3][ 760/1563]  lr: 1.0000e-03  eta: 0:03:41  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.7641
11/22 16:47:45 - mmengine - INFO - Epoch(train) [3][ 770/1563]  lr: 1.0000e-03  eta: 0:03:41  time: 0.0539  data_time: 0.0139  memory: 382  loss: 1.7119
11/22 16:47:45 - mmengine - INFO - Epoch(train) [3][ 780/1563]  lr: 1.0000e-03  eta: 0:03:40  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.6977
11/22 16:47:46 - mmengine - INFO - Epoch(train) [3][ 790/1563]  lr: 1.0000e-03  eta: 0:03:40  time: 0.0540  data_time: 0.0139  memory: 382  loss: 1.7686
11/22 16:47:46 - mmengine - INFO - Epoch(train) [3][ 800/1563]  lr: 1.0000e-03  eta: 0:03:39  time: 0.0542  data_time: 0.0142  memory: 382  loss: 1.6454
11/22 16:47:47 - mmengine - INFO - Epoch(train) [3][ 810/1563]  lr: 1.0000e-03  eta: 0:03:38  time: 0.0512  data_time: 0.0137  memory: 382  loss: 1.5920
11/22 16:47:47 - mmengine - INFO - Epoch(train) [3][ 820/1563]  lr: 1.0000e-03  eta: 0:03:38  time: 0.0519  data_time: 0.0137  memory: 382  loss: 1.7565
11/22 16:47:48 - mmengine - INFO - Epoch(train) [3][ 830/1563]  lr: 1.0000e-03  eta: 0:03:37  time: 0.0521  data_time: 0.0140  memory: 382  loss: 1.6128
11/22 16:47:48 - mmengine - INFO - Epoch(train) [3][ 840/1563]  lr: 1.0000e-03  eta: 0:03:37  time: 0.0538  data_time: 0.0140  memory: 382  loss: 1.6129
11/22 16:47:49 - mmengine - INFO - Epoch(train) [3][ 850/1563]  lr: 1.0000e-03  eta: 0:03:36  time: 0.0539  data_time: 0.0141  memory: 382  loss: 1.6814
11/22 16:47:49 - mmengine - INFO - Epoch(train) [3][ 860/1563]  lr: 1.0000e-03  eta: 0:03:35  time: 0.0543  data_time: 0.0141  memory: 382  loss: 1.6300
11/22 16:47:50 - mmengine - INFO - Epoch(train) [3][ 870/1563]  lr: 1.0000e-03  eta: 0:03:35  time: 0.0531  data_time: 0.0139  memory: 382  loss: 1.8181
11/22 16:47:50 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:47:51 - mmengine - INFO - Epoch(train) [3][ 880/1563]  lr: 1.0000e-03  eta: 0:03:34  time: 0.0543  data_time: 0.0141  memory: 382  loss: 1.7343
11/22 16:47:51 - mmengine - INFO - Epoch(train) [3][ 890/1563]  lr: 1.0000e-03  eta: 0:03:34  time: 0.0538  data_time: 0.0139  memory: 382  loss: 1.5847
11/22 16:47:52 - mmengine - INFO - Epoch(train) [3][ 900/1563]  lr: 1.0000e-03  eta: 0:03:33  time: 0.0522  data_time: 0.0139  memory: 382  loss: 1.6588
11/22 16:47:52 - mmengine - INFO - Epoch(train) [3][ 910/1563]  lr: 1.0000e-03  eta: 0:03:32  time: 0.0536  data_time: 0.0139  memory: 382  loss: 1.5980
11/22 16:47:53 - mmengine - INFO - Epoch(train) [3][ 920/1563]  lr: 1.0000e-03  eta: 0:03:32  time: 0.0548  data_time: 0.0143  memory: 382  loss: 1.6948
11/22 16:47:53 - mmengine - INFO - Epoch(train) [3][ 930/1563]  lr: 1.0000e-03  eta: 0:03:31  time: 0.0539  data_time: 0.0139  memory: 382  loss: 1.7071
11/22 16:47:54 - mmengine - INFO - Epoch(train) [3][ 940/1563]  lr: 1.0000e-03  eta: 0:03:31  time: 0.0541  data_time: 0.0139  memory: 382  loss: 1.7188
11/22 16:47:54 - mmengine - INFO - Epoch(train) [3][ 950/1563]  lr: 1.0000e-03  eta: 0:03:30  time: 0.0540  data_time: 0.0139  memory: 382  loss: 1.6856
11/22 16:47:55 - mmengine - INFO - Epoch(train) [3][ 960/1563]  lr: 1.0000e-03  eta: 0:03:30  time: 0.0541  data_time: 0.0140  memory: 382  loss: 1.5540
11/22 16:47:55 - mmengine - INFO - Epoch(train) [3][ 970/1563]  lr: 1.0000e-03  eta: 0:03:29  time: 0.0544  data_time: 0.0140  memory: 382  loss: 1.6686
11/22 16:47:56 - mmengine - INFO - Epoch(train) [3][ 980/1563]  lr: 1.0000e-03  eta: 0:03:28  time: 0.0546  data_time: 0.0144  memory: 382  loss: 1.6318
11/22 16:47:56 - mmengine - INFO - Epoch(train) [3][ 990/1563]  lr: 1.0000e-03  eta: 0:03:28  time: 0.0522  data_time: 0.0140  memory: 382  loss: 1.6669
11/22 16:47:57 - mmengine - INFO - Epoch(train) [3][1000/1563]  lr: 1.0000e-03  eta: 0:03:27  time: 0.0516  data_time: 0.0139  memory: 382  loss: 1.7148
11/22 16:47:57 - mmengine - INFO - Epoch(train) [3][1010/1563]  lr: 1.0000e-03  eta: 0:03:27  time: 0.0517  data_time: 0.0137  memory: 382  loss: 1.6002
11/22 16:47:58 - mmengine - INFO - Epoch(train) [3][1020/1563]  lr: 1.0000e-03  eta: 0:03:26  time: 0.0538  data_time: 0.0140  memory: 382  loss: 1.6180
11/22 16:47:59 - mmengine - INFO - Epoch(train) [3][1030/1563]  lr: 1.0000e-03  eta: 0:03:25  time: 0.0537  data_time: 0.0139  memory: 382  loss: 1.6952
11/22 16:47:59 - mmengine - INFO - Epoch(train) [3][1040/1563]  lr: 1.0000e-03  eta: 0:03:25  time: 0.0540  data_time: 0.0140  memory: 382  loss: 1.5350
11/22 16:48:00 - mmengine - INFO - Epoch(train) [3][1050/1563]  lr: 1.0000e-03  eta: 0:03:24  time: 0.0539  data_time: 0.0140  memory: 382  loss: 1.6214
11/22 16:48:00 - mmengine - INFO - Epoch(train) [3][1060/1563]  lr: 1.0000e-03  eta: 0:03:24  time: 0.0584  data_time: 0.0166  memory: 382  loss: 1.6768
11/22 16:48:01 - mmengine - INFO - Epoch(train) [3][1070/1563]  lr: 1.0000e-03  eta: 0:03:23  time: 0.0563  data_time: 0.0163  memory: 382  loss: 1.6510
11/22 16:48:01 - mmengine - INFO - Epoch(train) [3][1080/1563]  lr: 1.0000e-03  eta: 0:03:23  time: 0.0530  data_time: 0.0142  memory: 382  loss: 1.6150
11/22 16:48:02 - mmengine - INFO - Epoch(train) [3][1090/1563]  lr: 1.0000e-03  eta: 0:03:22  time: 0.0580  data_time: 0.0170  memory: 382  loss: 1.5842
11/22 16:48:02 - mmengine - INFO - Epoch(train) [3][1100/1563]  lr: 1.0000e-03  eta: 0:03:21  time: 0.0567  data_time: 0.0164  memory: 382  loss: 1.8733
11/22 16:48:03 - mmengine - INFO - Epoch(train) [3][1110/1563]  lr: 1.0000e-03  eta: 0:03:21  time: 0.0530  data_time: 0.0143  memory: 382  loss: 1.6146
11/22 16:48:04 - mmengine - INFO - Epoch(train) [3][1120/1563]  lr: 1.0000e-03  eta: 0:03:20  time: 0.0529  data_time: 0.0141  memory: 382  loss: 1.5651
11/22 16:48:04 - mmengine - INFO - Epoch(train) [3][1130/1563]  lr: 1.0000e-03  eta: 0:03:20  time: 0.0705  data_time: 0.0228  memory: 382  loss: 1.6882
11/22 16:48:05 - mmengine - INFO - Epoch(train) [3][1140/1563]  lr: 1.0000e-03  eta: 0:03:19  time: 0.0755  data_time: 0.0258  memory: 382  loss: 1.5309
11/22 16:48:06 - mmengine - INFO - Epoch(train) [3][1150/1563]  lr: 1.0000e-03  eta: 0:03:19  time: 0.0540  data_time: 0.0171  memory: 382  loss: 1.7008
11/22 16:48:06 - mmengine - INFO - Epoch(train) [3][1160/1563]  lr: 1.0000e-03  eta: 0:03:18  time: 0.0561  data_time: 0.0183  memory: 382  loss: 1.6935
11/22 16:48:07 - mmengine - INFO - Epoch(train) [3][1170/1563]  lr: 1.0000e-03  eta: 0:03:18  time: 0.0485  data_time: 0.0138  memory: 382  loss: 1.5953
11/22 16:48:07 - mmengine - INFO - Epoch(train) [3][1180/1563]  lr: 1.0000e-03  eta: 0:03:17  time: 0.0553  data_time: 0.0184  memory: 382  loss: 1.7106
11/22 16:48:08 - mmengine - INFO - Epoch(train) [3][1190/1563]  lr: 1.0000e-03  eta: 0:03:16  time: 0.0507  data_time: 0.0132  memory: 382  loss: 1.6371
11/22 16:48:08 - mmengine - INFO - Epoch(train) [3][1200/1563]  lr: 1.0000e-03  eta: 0:03:16  time: 0.0531  data_time: 0.0167  memory: 382  loss: 1.6515
11/22 16:48:09 - mmengine - INFO - Epoch(train) [3][1210/1563]  lr: 1.0000e-03  eta: 0:03:15  time: 0.0476  data_time: 0.0132  memory: 382  loss: 1.5957
11/22 16:48:09 - mmengine - INFO - Epoch(train) [3][1220/1563]  lr: 1.0000e-03  eta: 0:03:15  time: 0.0533  data_time: 0.0165  memory: 382  loss: 1.7322
11/22 16:48:10 - mmengine - INFO - Epoch(train) [3][1230/1563]  lr: 1.0000e-03  eta: 0:03:14  time: 0.0526  data_time: 0.0139  memory: 382  loss: 1.7070
11/22 16:48:10 - mmengine - INFO - Epoch(train) [3][1240/1563]  lr: 1.0000e-03  eta: 0:03:14  time: 0.0570  data_time: 0.0153  memory: 382  loss: 1.6752
11/22 16:48:11 - mmengine - INFO - Epoch(train) [3][1250/1563]  lr: 1.0000e-03  eta: 0:03:13  time: 0.0903  data_time: 0.0324  memory: 382  loss: 1.5140
11/22 16:48:12 - mmengine - INFO - Epoch(train) [3][1260/1563]  lr: 1.0000e-03  eta: 0:03:13  time: 0.0774  data_time: 0.0272  memory: 382  loss: 1.6021
11/22 16:48:13 - mmengine - INFO - Epoch(train) [3][1270/1563]  lr: 1.0000e-03  eta: 0:03:12  time: 0.0670  data_time: 0.0222  memory: 382  loss: 1.7170
11/22 16:48:13 - mmengine - INFO - Epoch(train) [3][1280/1563]  lr: 1.0000e-03  eta: 0:03:12  time: 0.0597  data_time: 0.0172  memory: 382  loss: 1.6965
11/22 16:48:14 - mmengine - INFO - Epoch(train) [3][1290/1563]  lr: 1.0000e-03  eta: 0:03:11  time: 0.0571  data_time: 0.0169  memory: 382  loss: 1.5570
11/22 16:48:14 - mmengine - INFO - Epoch(train) [3][1300/1563]  lr: 1.0000e-03  eta: 0:03:11  time: 0.0573  data_time: 0.0152  memory: 382  loss: 1.7423
11/22 16:48:15 - mmengine - INFO - Epoch(train) [3][1310/1563]  lr: 1.0000e-03  eta: 0:03:10  time: 0.0559  data_time: 0.0145  memory: 382  loss: 1.6773
11/22 16:48:15 - mmengine - INFO - Epoch(train) [3][1320/1563]  lr: 1.0000e-03  eta: 0:03:10  time: 0.0553  data_time: 0.0144  memory: 382  loss: 1.6053
11/22 16:48:16 - mmengine - INFO - Epoch(train) [3][1330/1563]  lr: 1.0000e-03  eta: 0:03:09  time: 0.0540  data_time: 0.0138  memory: 382  loss: 1.7449
11/22 16:48:17 - mmengine - INFO - Epoch(train) [3][1340/1563]  lr: 1.0000e-03  eta: 0:03:08  time: 0.0538  data_time: 0.0140  memory: 382  loss: 1.7399
11/22 16:48:17 - mmengine - INFO - Epoch(train) [3][1350/1563]  lr: 1.0000e-03  eta: 0:03:08  time: 0.0524  data_time: 0.0139  memory: 382  loss: 1.5348
11/22 16:48:18 - mmengine - INFO - Epoch(train) [3][1360/1563]  lr: 1.0000e-03  eta: 0:03:07  time: 0.0526  data_time: 0.0140  memory: 382  loss: 1.5117
11/22 16:48:18 - mmengine - INFO - Epoch(train) [3][1370/1563]  lr: 1.0000e-03  eta: 0:03:07  time: 0.0524  data_time: 0.0138  memory: 382  loss: 1.6947
11/22 16:48:19 - mmengine - INFO - Epoch(train) [3][1380/1563]  lr: 1.0000e-03  eta: 0:03:06  time: 0.0522  data_time: 0.0139  memory: 382  loss: 1.6303
11/22 16:48:19 - mmengine - INFO - Epoch(train) [3][1390/1563]  lr: 1.0000e-03  eta: 0:03:05  time: 0.0522  data_time: 0.0139  memory: 382  loss: 1.6375
11/22 16:48:20 - mmengine - INFO - Epoch(train) [3][1400/1563]  lr: 1.0000e-03  eta: 0:03:05  time: 0.0523  data_time: 0.0137  memory: 382  loss: 1.6429
11/22 16:48:20 - mmengine - INFO - Epoch(train) [3][1410/1563]  lr: 1.0000e-03  eta: 0:03:04  time: 0.0525  data_time: 0.0139  memory: 382  loss: 1.6803
11/22 16:48:21 - mmengine - INFO - Epoch(train) [3][1420/1563]  lr: 1.0000e-03  eta: 0:03:04  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.5705
11/22 16:48:21 - mmengine - INFO - Epoch(train) [3][1430/1563]  lr: 1.0000e-03  eta: 0:03:03  time: 0.0539  data_time: 0.0139  memory: 382  loss: 1.6145
11/22 16:48:22 - mmengine - INFO - Epoch(train) [3][1440/1563]  lr: 1.0000e-03  eta: 0:03:02  time: 0.0527  data_time: 0.0137  memory: 382  loss: 1.6834
11/22 16:48:22 - mmengine - INFO - Epoch(train) [3][1450/1563]  lr: 1.0000e-03  eta: 0:03:02  time: 0.0523  data_time: 0.0139  memory: 382  loss: 1.6103
11/22 16:48:23 - mmengine - INFO - Epoch(train) [3][1460/1563]  lr: 1.0000e-03  eta: 0:03:01  time: 0.0528  data_time: 0.0139  memory: 382  loss: 1.6688
11/22 16:48:23 - mmengine - INFO - Epoch(train) [3][1470/1563]  lr: 1.0000e-03  eta: 0:03:01  time: 0.0523  data_time: 0.0138  memory: 382  loss: 1.6066
11/22 16:48:24 - mmengine - INFO - Epoch(train) [3][1480/1563]  lr: 1.0000e-03  eta: 0:03:00  time: 0.0523  data_time: 0.0138  memory: 382  loss: 1.4817
11/22 16:48:24 - mmengine - INFO - Epoch(train) [3][1490/1563]  lr: 1.0000e-03  eta: 0:03:00  time: 0.0525  data_time: 0.0138  memory: 382  loss: 1.5851
11/22 16:48:25 - mmengine - INFO - Epoch(train) [3][1500/1563]  lr: 1.0000e-03  eta: 0:02:59  time: 0.0518  data_time: 0.0137  memory: 382  loss: 1.6215
11/22 16:48:25 - mmengine - INFO - Epoch(train) [3][1510/1563]  lr: 1.0000e-03  eta: 0:02:58  time: 0.0522  data_time: 0.0138  memory: 382  loss: 1.7130
11/22 16:48:26 - mmengine - INFO - Epoch(train) [3][1520/1563]  lr: 1.0000e-03  eta: 0:02:58  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.6338
11/22 16:48:27 - mmengine - INFO - Epoch(train) [3][1530/1563]  lr: 1.0000e-03  eta: 0:02:57  time: 0.0528  data_time: 0.0141  memory: 382  loss: 1.6627
11/22 16:48:27 - mmengine - INFO - Epoch(train) [3][1540/1563]  lr: 1.0000e-03  eta: 0:02:57  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.6814
11/22 16:48:28 - mmengine - INFO - Epoch(train) [3][1550/1563]  lr: 1.0000e-03  eta: 0:02:56  time: 0.0524  data_time: 0.0139  memory: 382  loss: 1.7130
11/22 16:48:28 - mmengine - INFO - Epoch(train) [3][1560/1563]  lr: 1.0000e-03  eta: 0:02:55  time: 0.0519  data_time: 0.0137  memory: 382  loss: 1.5962
11/22 16:48:28 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:48:28 - mmengine - INFO - Saving checkpoint at 3 epochs
11/22 16:48:29 - mmengine - INFO - Epoch(val) [3][ 10/313]    eta: 0:00:06  time: 0.0219  data_time: 0.0116  memory: 382  
11/22 16:48:29 - mmengine - INFO - Epoch(val) [3][ 20/313]    eta: 0:00:05  time: 0.0181  data_time: 0.0089  memory: 225  
11/22 16:48:29 - mmengine - INFO - Epoch(val) [3][ 30/313]    eta: 0:00:05  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:30 - mmengine - INFO - Epoch(val) [3][ 40/313]    eta: 0:00:05  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:30 - mmengine - INFO - Epoch(val) [3][ 50/313]    eta: 0:00:04  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:48:30 - mmengine - INFO - Epoch(val) [3][ 60/313]    eta: 0:00:04  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:48:30 - mmengine - INFO - Epoch(val) [3][ 70/313]    eta: 0:00:04  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:48:30 - mmengine - INFO - Epoch(val) [3][ 80/313]    eta: 0:00:04  time: 0.0171  data_time: 0.0084  memory: 225  
11/22 16:48:30 - mmengine - INFO - Epoch(val) [3][ 90/313]    eta: 0:00:03  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:48:31 - mmengine - INFO - Epoch(val) [3][100/313]    eta: 0:00:03  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:31 - mmengine - INFO - Epoch(val) [3][110/313]    eta: 0:00:03  time: 0.0170  data_time: 0.0083  memory: 225  
11/22 16:48:31 - mmengine - INFO - Epoch(val) [3][120/313]    eta: 0:00:03  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:31 - mmengine - INFO - Epoch(val) [3][130/313]    eta: 0:00:03  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:31 - mmengine - INFO - Epoch(val) [3][140/313]    eta: 0:00:03  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:31 - mmengine - INFO - Epoch(val) [3][150/313]    eta: 0:00:02  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:48:32 - mmengine - INFO - Epoch(val) [3][160/313]    eta: 0:00:02  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:32 - mmengine - INFO - Epoch(val) [3][170/313]    eta: 0:00:02  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:32 - mmengine - INFO - Epoch(val) [3][180/313]    eta: 0:00:02  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:48:32 - mmengine - INFO - Epoch(val) [3][190/313]    eta: 0:00:02  time: 0.0170  data_time: 0.0083  memory: 225  
11/22 16:48:32 - mmengine - INFO - Epoch(val) [3][200/313]    eta: 0:00:01  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:32 - mmengine - INFO - Epoch(val) [3][210/313]    eta: 0:00:01  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:48:33 - mmengine - INFO - Epoch(val) [3][220/313]    eta: 0:00:01  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:33 - mmengine - INFO - Epoch(val) [3][230/313]    eta: 0:00:01  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:48:33 - mmengine - INFO - Epoch(val) [3][240/313]    eta: 0:00:01  time: 0.0168  data_time: 0.0082  memory: 225  
11/22 16:48:33 - mmengine - INFO - Epoch(val) [3][250/313]    eta: 0:00:01  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:33 - mmengine - INFO - Epoch(val) [3][260/313]    eta: 0:00:00  time: 0.0168  data_time: 0.0082  memory: 225  
11/22 16:48:33 - mmengine - INFO - Epoch(val) [3][270/313]    eta: 0:00:00  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:48:34 - mmengine - INFO - Epoch(val) [3][280/313]    eta: 0:00:00  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:48:34 - mmengine - INFO - Epoch(val) [3][290/313]    eta: 0:00:00  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:48:34 - mmengine - INFO - Epoch(val) [3][300/313]    eta: 0:00:00  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:48:34 - mmengine - INFO - Epoch(val) [3][310/313]    eta: 0:00:00  time: 0.0171  data_time: 0.0085  memory: 225  
11/22 16:48:34 - mmengine - INFO - Epoch(val) [3][313/313]    accuracy: 46.4500  data_time: 0.0084  time: 0.0171
11/22 16:48:35 - mmengine - INFO - Epoch(train) [4][  10/1563]  lr: 1.0000e-03  eta: 0:02:55  time: 0.0518  data_time: 0.0133  memory: 382  loss: 1.4827
11/22 16:48:35 - mmengine - INFO - Epoch(train) [4][  20/1563]  lr: 1.0000e-03  eta: 0:02:54  time: 0.0510  data_time: 0.0132  memory: 382  loss: 1.6613
11/22 16:48:36 - mmengine - INFO - Epoch(train) [4][  30/1563]  lr: 1.0000e-03  eta: 0:02:53  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.5464
11/22 16:48:36 - mmengine - INFO - Epoch(train) [4][  40/1563]  lr: 1.0000e-03  eta: 0:02:53  time: 0.0510  data_time: 0.0132  memory: 382  loss: 1.5757
11/22 16:48:37 - mmengine - INFO - Epoch(train) [4][  50/1563]  lr: 1.0000e-03  eta: 0:02:52  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.6691
11/22 16:48:37 - mmengine - INFO - Epoch(train) [4][  60/1563]  lr: 1.0000e-03  eta: 0:02:52  time: 0.0513  data_time: 0.0133  memory: 382  loss: 1.6151
11/22 16:48:38 - mmengine - INFO - Epoch(train) [4][  70/1563]  lr: 1.0000e-03  eta: 0:02:51  time: 0.0513  data_time: 0.0133  memory: 382  loss: 1.6309
11/22 16:48:38 - mmengine - INFO - Epoch(train) [4][  80/1563]  lr: 1.0000e-03  eta: 0:02:50  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.5857
11/22 16:48:39 - mmengine - INFO - Epoch(train) [4][  90/1563]  lr: 1.0000e-03  eta: 0:02:50  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.7167
11/22 16:48:39 - mmengine - INFO - Epoch(train) [4][ 100/1563]  lr: 1.0000e-03  eta: 0:02:49  time: 0.0520  data_time: 0.0136  memory: 382  loss: 1.6490
11/22 16:48:40 - mmengine - INFO - Epoch(train) [4][ 110/1563]  lr: 1.0000e-03  eta: 0:02:49  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.4848
11/22 16:48:40 - mmengine - INFO - Epoch(train) [4][ 120/1563]  lr: 1.0000e-03  eta: 0:02:48  time: 0.0516  data_time: 0.0133  memory: 382  loss: 1.6159
11/22 16:48:41 - mmengine - INFO - Epoch(train) [4][ 130/1563]  lr: 1.0000e-03  eta: 0:02:48  time: 0.0513  data_time: 0.0133  memory: 382  loss: 1.7069
11/22 16:48:41 - mmengine - INFO - Epoch(train) [4][ 140/1563]  lr: 1.0000e-03  eta: 0:02:47  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.6253
11/22 16:48:42 - mmengine - INFO - Epoch(train) [4][ 150/1563]  lr: 1.0000e-03  eta: 0:02:46  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.6000
11/22 16:48:42 - mmengine - INFO - Epoch(train) [4][ 160/1563]  lr: 1.0000e-03  eta: 0:02:46  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.5325
11/22 16:48:43 - mmengine - INFO - Epoch(train) [4][ 170/1563]  lr: 1.0000e-03  eta: 0:02:45  time: 0.0512  data_time: 0.0133  memory: 382  loss: 1.5598
11/22 16:48:43 - mmengine - INFO - Epoch(train) [4][ 180/1563]  lr: 1.0000e-03  eta: 0:02:45  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.5560
11/22 16:48:44 - mmengine - INFO - Epoch(train) [4][ 190/1563]  lr: 1.0000e-03  eta: 0:02:44  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.4787
11/22 16:48:44 - mmengine - INFO - Epoch(train) [4][ 200/1563]  lr: 1.0000e-03  eta: 0:02:43  time: 0.0513  data_time: 0.0134  memory: 382  loss: 1.6953
11/22 16:48:45 - mmengine - INFO - Epoch(train) [4][ 210/1563]  lr: 1.0000e-03  eta: 0:02:43  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.5108
11/22 16:48:46 - mmengine - INFO - Epoch(train) [4][ 220/1563]  lr: 1.0000e-03  eta: 0:02:42  time: 0.0513  data_time: 0.0134  memory: 382  loss: 1.5402
11/22 16:48:46 - mmengine - INFO - Epoch(train) [4][ 230/1563]  lr: 1.0000e-03  eta: 0:02:42  time: 0.0517  data_time: 0.0135  memory: 382  loss: 1.7756
11/22 16:48:47 - mmengine - INFO - Epoch(train) [4][ 240/1563]  lr: 1.0000e-03  eta: 0:02:41  time: 0.0531  data_time: 0.0144  memory: 382  loss: 1.6098
11/22 16:48:47 - mmengine - INFO - Epoch(train) [4][ 250/1563]  lr: 1.0000e-03  eta: 0:02:41  time: 0.0585  data_time: 0.0159  memory: 382  loss: 1.7508
11/22 16:48:48 - mmengine - INFO - Epoch(train) [4][ 260/1563]  lr: 1.0000e-03  eta: 0:02:40  time: 0.0577  data_time: 0.0156  memory: 382  loss: 1.5077
11/22 16:48:48 - mmengine - INFO - Epoch(train) [4][ 270/1563]  lr: 1.0000e-03  eta: 0:02:39  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.7236
11/22 16:48:49 - mmengine - INFO - Epoch(train) [4][ 280/1563]  lr: 1.0000e-03  eta: 0:02:39  time: 0.0582  data_time: 0.0156  memory: 382  loss: 1.5900
11/22 16:48:49 - mmengine - INFO - Epoch(train) [4][ 290/1563]  lr: 1.0000e-03  eta: 0:02:38  time: 0.0583  data_time: 0.0159  memory: 382  loss: 1.6442
11/22 16:48:50 - mmengine - INFO - Epoch(train) [4][ 300/1563]  lr: 1.0000e-03  eta: 0:02:38  time: 0.0582  data_time: 0.0157  memory: 382  loss: 1.4944
11/22 16:48:51 - mmengine - INFO - Epoch(train) [4][ 310/1563]  lr: 1.0000e-03  eta: 0:02:37  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6391
11/22 16:48:51 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:48:51 - mmengine - INFO - Epoch(train) [4][ 320/1563]  lr: 1.0000e-03  eta: 0:02:37  time: 0.0585  data_time: 0.0161  memory: 382  loss: 1.6686
11/22 16:48:52 - mmengine - INFO - Epoch(train) [4][ 330/1563]  lr: 1.0000e-03  eta: 0:02:36  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6061
11/22 16:48:52 - mmengine - INFO - Epoch(train) [4][ 340/1563]  lr: 1.0000e-03  eta: 0:02:36  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5049
11/22 16:48:53 - mmengine - INFO - Epoch(train) [4][ 350/1563]  lr: 1.0000e-03  eta: 0:02:35  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.7170
11/22 16:48:54 - mmengine - INFO - Epoch(train) [4][ 360/1563]  lr: 1.0000e-03  eta: 0:02:34  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.5866
11/22 16:48:54 - mmengine - INFO - Epoch(train) [4][ 370/1563]  lr: 1.0000e-03  eta: 0:02:34  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5168
11/22 16:48:55 - mmengine - INFO - Epoch(train) [4][ 380/1563]  lr: 1.0000e-03  eta: 0:02:33  time: 0.0583  data_time: 0.0159  memory: 382  loss: 1.5840
11/22 16:48:55 - mmengine - INFO - Epoch(train) [4][ 390/1563]  lr: 1.0000e-03  eta: 0:02:33  time: 0.0548  data_time: 0.0157  memory: 382  loss: 1.6690
11/22 16:48:56 - mmengine - INFO - Epoch(train) [4][ 400/1563]  lr: 1.0000e-03  eta: 0:02:32  time: 0.0570  data_time: 0.0160  memory: 382  loss: 1.5442
11/22 16:48:56 - mmengine - INFO - Epoch(train) [4][ 410/1563]  lr: 1.0000e-03  eta: 0:02:32  time: 0.0585  data_time: 0.0159  memory: 382  loss: 1.6225
11/22 16:48:57 - mmengine - INFO - Epoch(train) [4][ 420/1563]  lr: 1.0000e-03  eta: 0:02:31  time: 0.0587  data_time: 0.0161  memory: 382  loss: 1.6509
11/22 16:48:58 - mmengine - INFO - Epoch(train) [4][ 430/1563]  lr: 1.0000e-03  eta: 0:02:31  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5399
11/22 16:48:58 - mmengine - INFO - Epoch(train) [4][ 440/1563]  lr: 1.0000e-03  eta: 0:02:30  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.7360
11/22 16:48:59 - mmengine - INFO - Epoch(train) [4][ 450/1563]  lr: 1.0000e-03  eta: 0:02:30  time: 0.0562  data_time: 0.0156  memory: 382  loss: 1.6366
11/22 16:48:59 - mmengine - INFO - Epoch(train) [4][ 460/1563]  lr: 1.0000e-03  eta: 0:02:29  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5633
11/22 16:49:00 - mmengine - INFO - Epoch(train) [4][ 470/1563]  lr: 1.0000e-03  eta: 0:02:28  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.7030
11/22 16:49:00 - mmengine - INFO - Epoch(train) [4][ 480/1563]  lr: 1.0000e-03  eta: 0:02:28  time: 0.0586  data_time: 0.0161  memory: 382  loss: 1.6098
11/22 16:49:01 - mmengine - INFO - Epoch(train) [4][ 490/1563]  lr: 1.0000e-03  eta: 0:02:27  time: 0.0583  data_time: 0.0157  memory: 382  loss: 1.5978
11/22 16:49:02 - mmengine - INFO - Epoch(train) [4][ 500/1563]  lr: 1.0000e-03  eta: 0:02:27  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.5659
11/22 16:49:02 - mmengine - INFO - Epoch(train) [4][ 510/1563]  lr: 1.0000e-03  eta: 0:02:26  time: 0.0581  data_time: 0.0158  memory: 382  loss: 1.6597
11/22 16:49:03 - mmengine - INFO - Epoch(train) [4][ 520/1563]  lr: 1.0000e-03  eta: 0:02:26  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.4810
11/22 16:49:03 - mmengine - INFO - Epoch(train) [4][ 530/1563]  lr: 1.0000e-03  eta: 0:02:25  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.5026
11/22 16:49:04 - mmengine - INFO - Epoch(train) [4][ 540/1563]  lr: 1.0000e-03  eta: 0:02:25  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.5160
11/22 16:49:05 - mmengine - INFO - Epoch(train) [4][ 550/1563]  lr: 1.0000e-03  eta: 0:02:24  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.7005
11/22 16:49:05 - mmengine - INFO - Epoch(train) [4][ 560/1563]  lr: 1.0000e-03  eta: 0:02:23  time: 0.0579  data_time: 0.0157  memory: 382  loss: 1.5502
11/22 16:49:06 - mmengine - INFO - Epoch(train) [4][ 570/1563]  lr: 1.0000e-03  eta: 0:02:23  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5649
11/22 16:49:06 - mmengine - INFO - Epoch(train) [4][ 580/1563]  lr: 1.0000e-03  eta: 0:02:22  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.5219
11/22 16:49:07 - mmengine - INFO - Epoch(train) [4][ 590/1563]  lr: 1.0000e-03  eta: 0:02:22  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.6810
11/22 16:49:07 - mmengine - INFO - Epoch(train) [4][ 600/1563]  lr: 1.0000e-03  eta: 0:02:21  time: 0.0580  data_time: 0.0155  memory: 382  loss: 1.4635
11/22 16:49:08 - mmengine - INFO - Epoch(train) [4][ 610/1563]  lr: 1.0000e-03  eta: 0:02:21  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.6882
11/22 16:49:09 - mmengine - INFO - Epoch(train) [4][ 620/1563]  lr: 1.0000e-03  eta: 0:02:20  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.4945
11/22 16:49:09 - mmengine - INFO - Epoch(train) [4][ 630/1563]  lr: 1.0000e-03  eta: 0:02:20  time: 0.0582  data_time: 0.0156  memory: 382  loss: 1.6907
11/22 16:49:10 - mmengine - INFO - Epoch(train) [4][ 640/1563]  lr: 1.0000e-03  eta: 0:02:19  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6535
11/22 16:49:10 - mmengine - INFO - Epoch(train) [4][ 650/1563]  lr: 1.0000e-03  eta: 0:02:18  time: 0.0578  data_time: 0.0155  memory: 382  loss: 1.6673
11/22 16:49:11 - mmengine - INFO - Epoch(train) [4][ 660/1563]  lr: 1.0000e-03  eta: 0:02:18  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5819
11/22 16:49:12 - mmengine - INFO - Epoch(train) [4][ 670/1563]  lr: 1.0000e-03  eta: 0:02:17  time: 0.0590  data_time: 0.0165  memory: 382  loss: 1.5481
11/22 16:49:12 - mmengine - INFO - Epoch(train) [4][ 680/1563]  lr: 1.0000e-03  eta: 0:02:17  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5307
11/22 16:49:13 - mmengine - INFO - Epoch(train) [4][ 690/1563]  lr: 1.0000e-03  eta: 0:02:16  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5848
11/22 16:49:13 - mmengine - INFO - Epoch(train) [4][ 700/1563]  lr: 1.0000e-03  eta: 0:02:16  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.6722
11/22 16:49:14 - mmengine - INFO - Epoch(train) [4][ 710/1563]  lr: 1.0000e-03  eta: 0:02:15  time: 0.0582  data_time: 0.0159  memory: 382  loss: 1.6036
11/22 16:49:14 - mmengine - INFO - Epoch(train) [4][ 720/1563]  lr: 1.0000e-03  eta: 0:02:15  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.6059
11/22 16:49:15 - mmengine - INFO - Epoch(train) [4][ 730/1563]  lr: 1.0000e-03  eta: 0:02:14  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.6429
11/22 16:49:16 - mmengine - INFO - Epoch(train) [4][ 740/1563]  lr: 1.0000e-03  eta: 0:02:14  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.6281
11/22 16:49:16 - mmengine - INFO - Epoch(train) [4][ 750/1563]  lr: 1.0000e-03  eta: 0:02:13  time: 0.0584  data_time: 0.0156  memory: 382  loss: 1.5211
11/22 16:49:17 - mmengine - INFO - Epoch(train) [4][ 760/1563]  lr: 1.0000e-03  eta: 0:02:12  time: 0.0582  data_time: 0.0158  memory: 382  loss: 1.5727
11/22 16:49:17 - mmengine - INFO - Epoch(train) [4][ 770/1563]  lr: 1.0000e-03  eta: 0:02:12  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6995
11/22 16:49:18 - mmengine - INFO - Epoch(train) [4][ 780/1563]  lr: 1.0000e-03  eta: 0:02:11  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.5949
11/22 16:49:19 - mmengine - INFO - Epoch(train) [4][ 790/1563]  lr: 1.0000e-03  eta: 0:02:11  time: 0.0581  data_time: 0.0155  memory: 382  loss: 1.5910
11/22 16:49:19 - mmengine - INFO - Epoch(train) [4][ 800/1563]  lr: 1.0000e-03  eta: 0:02:10  time: 0.0582  data_time: 0.0156  memory: 382  loss: 1.6577
11/22 16:49:20 - mmengine - INFO - Epoch(train) [4][ 810/1563]  lr: 1.0000e-03  eta: 0:02:10  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.5431
11/22 16:49:20 - mmengine - INFO - Epoch(train) [4][ 820/1563]  lr: 1.0000e-03  eta: 0:02:09  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.6076
11/22 16:49:21 - mmengine - INFO - Epoch(train) [4][ 830/1563]  lr: 1.0000e-03  eta: 0:02:09  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.6482
11/22 16:49:21 - mmengine - INFO - Epoch(train) [4][ 840/1563]  lr: 1.0000e-03  eta: 0:02:08  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.6101
11/22 16:49:22 - mmengine - INFO - Epoch(train) [4][ 850/1563]  lr: 1.0000e-03  eta: 0:02:07  time: 0.0583  data_time: 0.0160  memory: 382  loss: 1.6150
11/22 16:49:23 - mmengine - INFO - Epoch(train) [4][ 860/1563]  lr: 1.0000e-03  eta: 0:02:07  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5988
11/22 16:49:23 - mmengine - INFO - Epoch(train) [4][ 870/1563]  lr: 1.0000e-03  eta: 0:02:06  time: 0.0579  data_time: 0.0155  memory: 382  loss: 1.5681
11/22 16:49:24 - mmengine - INFO - Epoch(train) [4][ 880/1563]  lr: 1.0000e-03  eta: 0:02:06  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.5544
11/22 16:49:24 - mmengine - INFO - Epoch(train) [4][ 890/1563]  lr: 1.0000e-03  eta: 0:02:05  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5334
11/22 16:49:25 - mmengine - INFO - Epoch(train) [4][ 900/1563]  lr: 1.0000e-03  eta: 0:02:05  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5827
11/22 16:49:25 - mmengine - INFO - Epoch(train) [4][ 910/1563]  lr: 1.0000e-03  eta: 0:02:04  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6359
11/22 16:49:26 - mmengine - INFO - Epoch(train) [4][ 920/1563]  lr: 1.0000e-03  eta: 0:02:04  time: 0.0588  data_time: 0.0159  memory: 382  loss: 1.6748
11/22 16:49:27 - mmengine - INFO - Epoch(train) [4][ 930/1563]  lr: 1.0000e-03  eta: 0:02:03  time: 0.0582  data_time: 0.0157  memory: 382  loss: 1.5071
11/22 16:49:27 - mmengine - INFO - Epoch(train) [4][ 940/1563]  lr: 1.0000e-03  eta: 0:02:02  time: 0.0582  data_time: 0.0157  memory: 382  loss: 1.5332
11/22 16:49:28 - mmengine - INFO - Epoch(train) [4][ 950/1563]  lr: 1.0000e-03  eta: 0:02:02  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.6278
11/22 16:49:28 - mmengine - INFO - Epoch(train) [4][ 960/1563]  lr: 1.0000e-03  eta: 0:02:01  time: 0.0581  data_time: 0.0157  memory: 382  loss: 1.4036
11/22 16:49:29 - mmengine - INFO - Epoch(train) [4][ 970/1563]  lr: 1.0000e-03  eta: 0:02:01  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.4834
11/22 16:49:30 - mmengine - INFO - Epoch(train) [4][ 980/1563]  lr: 1.0000e-03  eta: 0:02:00  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.5523
11/22 16:49:30 - mmengine - INFO - Epoch(train) [4][ 990/1563]  lr: 1.0000e-03  eta: 0:02:00  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.5490
11/22 16:49:31 - mmengine - INFO - Epoch(train) [4][1000/1563]  lr: 1.0000e-03  eta: 0:01:59  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.4718
11/22 16:49:31 - mmengine - INFO - Epoch(train) [4][1010/1563]  lr: 1.0000e-03  eta: 0:01:59  time: 0.0585  data_time: 0.0160  memory: 382  loss: 1.7312
11/22 16:49:32 - mmengine - INFO - Epoch(train) [4][1020/1563]  lr: 1.0000e-03  eta: 0:01:58  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5452
11/22 16:49:32 - mmengine - INFO - Epoch(train) [4][1030/1563]  lr: 1.0000e-03  eta: 0:01:57  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6344
11/22 16:49:33 - mmengine - INFO - Epoch(train) [4][1040/1563]  lr: 1.0000e-03  eta: 0:01:57  time: 0.0585  data_time: 0.0159  memory: 382  loss: 1.4563
11/22 16:49:34 - mmengine - INFO - Epoch(train) [4][1050/1563]  lr: 1.0000e-03  eta: 0:01:56  time: 0.0587  data_time: 0.0160  memory: 382  loss: 1.6368
11/22 16:49:34 - mmengine - INFO - Epoch(train) [4][1060/1563]  lr: 1.0000e-03  eta: 0:01:56  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.5848
11/22 16:49:35 - mmengine - INFO - Epoch(train) [4][1070/1563]  lr: 1.0000e-03  eta: 0:01:55  time: 0.0585  data_time: 0.0158  memory: 382  loss: 1.7266
11/22 16:49:35 - mmengine - INFO - Epoch(train) [4][1080/1563]  lr: 1.0000e-03  eta: 0:01:55  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.5943
11/22 16:49:36 - mmengine - INFO - Epoch(train) [4][1090/1563]  lr: 1.0000e-03  eta: 0:01:54  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5624
11/22 16:49:37 - mmengine - INFO - Epoch(train) [4][1100/1563]  lr: 1.0000e-03  eta: 0:01:54  time: 0.0582  data_time: 0.0156  memory: 382  loss: 1.7034
11/22 16:49:37 - mmengine - INFO - Epoch(train) [4][1110/1563]  lr: 1.0000e-03  eta: 0:01:53  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6762
11/22 16:49:38 - mmengine - INFO - Epoch(train) [4][1120/1563]  lr: 1.0000e-03  eta: 0:01:52  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.6385
11/22 16:49:38 - mmengine - INFO - Epoch(train) [4][1130/1563]  lr: 1.0000e-03  eta: 0:01:52  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.6235
11/22 16:49:39 - mmengine - INFO - Epoch(train) [4][1140/1563]  lr: 1.0000e-03  eta: 0:01:51  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5350
11/22 16:49:39 - mmengine - INFO - Epoch(train) [4][1150/1563]  lr: 1.0000e-03  eta: 0:01:51  time: 0.0582  data_time: 0.0156  memory: 382  loss: 1.7931
11/22 16:49:40 - mmengine - INFO - Epoch(train) [4][1160/1563]  lr: 1.0000e-03  eta: 0:01:50  time: 0.0579  data_time: 0.0155  memory: 382  loss: 1.6556
11/22 16:49:41 - mmengine - INFO - Epoch(train) [4][1170/1563]  lr: 1.0000e-03  eta: 0:01:50  time: 0.0580  data_time: 0.0157  memory: 382  loss: 1.5397
11/22 16:49:41 - mmengine - INFO - Epoch(train) [4][1180/1563]  lr: 1.0000e-03  eta: 0:01:49  time: 0.0579  data_time: 0.0155  memory: 382  loss: 1.6626
11/22 16:49:42 - mmengine - INFO - Epoch(train) [4][1190/1563]  lr: 1.0000e-03  eta: 0:01:49  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.4917
11/22 16:49:42 - mmengine - INFO - Epoch(train) [4][1200/1563]  lr: 1.0000e-03  eta: 0:01:48  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.4882
11/22 16:49:43 - mmengine - INFO - Epoch(train) [4][1210/1563]  lr: 1.0000e-03  eta: 0:01:47  time: 0.0579  data_time: 0.0155  memory: 382  loss: 1.6437
11/22 16:49:44 - mmengine - INFO - Epoch(train) [4][1220/1563]  lr: 1.0000e-03  eta: 0:01:47  time: 0.0586  data_time: 0.0160  memory: 382  loss: 1.5235
11/22 16:49:44 - mmengine - INFO - Epoch(train) [4][1230/1563]  lr: 1.0000e-03  eta: 0:01:46  time: 0.0582  data_time: 0.0156  memory: 382  loss: 1.5863
11/22 16:49:45 - mmengine - INFO - Epoch(train) [4][1240/1563]  lr: 1.0000e-03  eta: 0:01:46  time: 0.0579  data_time: 0.0157  memory: 382  loss: 1.5557
11/22 16:49:45 - mmengine - INFO - Epoch(train) [4][1250/1563]  lr: 1.0000e-03  eta: 0:01:45  time: 0.0554  data_time: 0.0157  memory: 382  loss: 1.5434
11/22 16:49:46 - mmengine - INFO - Epoch(train) [4][1260/1563]  lr: 1.0000e-03  eta: 0:01:45  time: 0.0578  data_time: 0.0154  memory: 382  loss: 1.5289
11/22 16:49:46 - mmengine - INFO - Epoch(train) [4][1270/1563]  lr: 1.0000e-03  eta: 0:01:44  time: 0.0577  data_time: 0.0155  memory: 382  loss: 1.5152
11/22 16:49:47 - mmengine - INFO - Epoch(train) [4][1280/1563]  lr: 1.0000e-03  eta: 0:01:44  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.5708
11/22 16:49:48 - mmengine - INFO - Epoch(train) [4][1290/1563]  lr: 1.0000e-03  eta: 0:01:43  time: 0.0576  data_time: 0.0155  memory: 382  loss: 1.5456
11/22 16:49:48 - mmengine - INFO - Epoch(train) [4][1300/1563]  lr: 1.0000e-03  eta: 0:01:42  time: 0.0577  data_time: 0.0155  memory: 382  loss: 1.5222
11/22 16:49:49 - mmengine - INFO - Epoch(train) [4][1310/1563]  lr: 1.0000e-03  eta: 0:01:42  time: 0.0581  data_time: 0.0157  memory: 382  loss: 1.5920
11/22 16:49:49 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:49:49 - mmengine - INFO - Epoch(train) [4][1320/1563]  lr: 1.0000e-03  eta: 0:01:41  time: 0.0586  data_time: 0.0160  memory: 382  loss: 1.6577
11/22 16:49:50 - mmengine - INFO - Epoch(train) [4][1330/1563]  lr: 1.0000e-03  eta: 0:01:41  time: 0.0578  data_time: 0.0155  memory: 382  loss: 1.5433
11/22 16:49:50 - mmengine - INFO - Epoch(train) [4][1340/1563]  lr: 1.0000e-03  eta: 0:01:40  time: 0.0576  data_time: 0.0155  memory: 382  loss: 1.6406
11/22 16:49:51 - mmengine - INFO - Epoch(train) [4][1350/1563]  lr: 1.0000e-03  eta: 0:01:40  time: 0.0581  data_time: 0.0155  memory: 382  loss: 1.4883
11/22 16:49:52 - mmengine - INFO - Epoch(train) [4][1360/1563]  lr: 1.0000e-03  eta: 0:01:39  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.5228
11/22 16:49:52 - mmengine - INFO - Epoch(train) [4][1370/1563]  lr: 1.0000e-03  eta: 0:01:38  time: 0.0577  data_time: 0.0155  memory: 382  loss: 1.5995
11/22 16:49:53 - mmengine - INFO - Epoch(train) [4][1380/1563]  lr: 1.0000e-03  eta: 0:01:38  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.5131
11/22 16:49:53 - mmengine - INFO - Epoch(train) [4][1390/1563]  lr: 1.0000e-03  eta: 0:01:37  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5755
11/22 16:49:54 - mmengine - INFO - Epoch(train) [4][1400/1563]  lr: 1.0000e-03  eta: 0:01:37  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5492
11/22 16:49:54 - mmengine - INFO - Epoch(train) [4][1410/1563]  lr: 1.0000e-03  eta: 0:01:36  time: 0.0578  data_time: 0.0155  memory: 382  loss: 1.5689
11/22 16:49:55 - mmengine - INFO - Epoch(train) [4][1420/1563]  lr: 1.0000e-03  eta: 0:01:36  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.5505
11/22 16:49:56 - mmengine - INFO - Epoch(train) [4][1430/1563]  lr: 1.0000e-03  eta: 0:01:35  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.6146
11/22 16:49:56 - mmengine - INFO - Epoch(train) [4][1440/1563]  lr: 1.0000e-03  eta: 0:01:35  time: 0.0582  data_time: 0.0158  memory: 382  loss: 1.5625
11/22 16:49:57 - mmengine - INFO - Epoch(train) [4][1450/1563]  lr: 1.0000e-03  eta: 0:01:34  time: 0.0527  data_time: 0.0155  memory: 382  loss: 1.6290
11/22 16:49:57 - mmengine - INFO - Epoch(train) [4][1460/1563]  lr: 1.0000e-03  eta: 0:01:33  time: 0.0570  data_time: 0.0155  memory: 382  loss: 1.6265
11/22 16:49:58 - mmengine - INFO - Epoch(train) [4][1470/1563]  lr: 1.0000e-03  eta: 0:01:33  time: 0.0578  data_time: 0.0155  memory: 382  loss: 1.5794
11/22 16:49:58 - mmengine - INFO - Epoch(train) [4][1480/1563]  lr: 1.0000e-03  eta: 0:01:32  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.4858
11/22 16:49:59 - mmengine - INFO - Epoch(train) [4][1490/1563]  lr: 1.0000e-03  eta: 0:01:32  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.5724
11/22 16:50:00 - mmengine - INFO - Epoch(train) [4][1500/1563]  lr: 1.0000e-03  eta: 0:01:31  time: 0.0581  data_time: 0.0158  memory: 382  loss: 1.5253
11/22 16:50:00 - mmengine - INFO - Epoch(train) [4][1510/1563]  lr: 1.0000e-03  eta: 0:01:31  time: 0.0575  data_time: 0.0154  memory: 382  loss: 1.5984
11/22 16:50:01 - mmengine - INFO - Epoch(train) [4][1520/1563]  lr: 1.0000e-03  eta: 0:01:30  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.4768
11/22 16:50:01 - mmengine - INFO - Epoch(train) [4][1530/1563]  lr: 1.0000e-03  eta: 0:01:30  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.6302
11/22 16:50:02 - mmengine - INFO - Epoch(train) [4][1540/1563]  lr: 1.0000e-03  eta: 0:01:29  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.4214
11/22 16:50:03 - mmengine - INFO - Epoch(train) [4][1550/1563]  lr: 1.0000e-03  eta: 0:01:28  time: 0.0578  data_time: 0.0155  memory: 382  loss: 1.5100
11/22 16:50:03 - mmengine - INFO - Epoch(train) [4][1560/1563]  lr: 1.0000e-03  eta: 0:01:28  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.5353
11/22 16:50:03 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:50:03 - mmengine - INFO - Saving checkpoint at 4 epochs
11/22 16:50:04 - mmengine - INFO - Epoch(val) [4][ 10/313]    eta: 0:00:06  time: 0.0201  data_time: 0.0098  memory: 382  
11/22 16:50:04 - mmengine - INFO - Epoch(val) [4][ 20/313]    eta: 0:00:05  time: 0.0190  data_time: 0.0093  memory: 225  
11/22 16:50:05 - mmengine - INFO - Epoch(val) [4][ 30/313]    eta: 0:00:05  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:05 - mmengine - INFO - Epoch(val) [4][ 40/313]    eta: 0:00:04  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:50:05 - mmengine - INFO - Epoch(val) [4][ 50/313]    eta: 0:00:04  time: 0.0171  data_time: 0.0085  memory: 225  
11/22 16:50:05 - mmengine - INFO - Epoch(val) [4][ 60/313]    eta: 0:00:04  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:50:05 - mmengine - INFO - Epoch(val) [4][ 70/313]    eta: 0:00:04  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:50:05 - mmengine - INFO - Epoch(val) [4][ 80/313]    eta: 0:00:04  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:06 - mmengine - INFO - Epoch(val) [4][ 90/313]    eta: 0:00:03  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:06 - mmengine - INFO - Epoch(val) [4][100/313]    eta: 0:00:03  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:50:06 - mmengine - INFO - Epoch(val) [4][110/313]    eta: 0:00:03  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:50:06 - mmengine - INFO - Epoch(val) [4][120/313]    eta: 0:00:03  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:50:06 - mmengine - INFO - Epoch(val) [4][130/313]    eta: 0:00:03  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:06 - mmengine - INFO - Epoch(val) [4][140/313]    eta: 0:00:02  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:50:07 - mmengine - INFO - Epoch(val) [4][150/313]    eta: 0:00:02  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:50:07 - mmengine - INFO - Epoch(val) [4][160/313]    eta: 0:00:02  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:50:07 - mmengine - INFO - Epoch(val) [4][170/313]    eta: 0:00:02  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:50:07 - mmengine - INFO - Epoch(val) [4][180/313]    eta: 0:00:02  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:50:07 - mmengine - INFO - Epoch(val) [4][190/313]    eta: 0:00:02  time: 0.0171  data_time: 0.0085  memory: 225  
11/22 16:50:07 - mmengine - INFO - Epoch(val) [4][200/313]    eta: 0:00:01  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:08 - mmengine - INFO - Epoch(val) [4][210/313]    eta: 0:00:01  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:08 - mmengine - INFO - Epoch(val) [4][220/313]    eta: 0:00:01  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:08 - mmengine - INFO - Epoch(val) [4][230/313]    eta: 0:00:01  time: 0.0168  data_time: 0.0083  memory: 225  
11/22 16:50:08 - mmengine - INFO - Epoch(val) [4][240/313]    eta: 0:00:01  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:50:08 - mmengine - INFO - Epoch(val) [4][250/313]    eta: 0:00:01  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:08 - mmengine - INFO - Epoch(val) [4][260/313]    eta: 0:00:00  time: 0.0169  data_time: 0.0084  memory: 225  
11/22 16:50:09 - mmengine - INFO - Epoch(val) [4][270/313]    eta: 0:00:00  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:09 - mmengine - INFO - Epoch(val) [4][280/313]    eta: 0:00:00  time: 0.0169  data_time: 0.0083  memory: 225  
11/22 16:50:09 - mmengine - INFO - Epoch(val) [4][290/313]    eta: 0:00:00  time: 0.0170  data_time: 0.0084  memory: 225  
11/22 16:50:09 - mmengine - INFO - Epoch(val) [4][300/313]    eta: 0:00:00  time: 0.0171  data_time: 0.0085  memory: 225  
11/22 16:50:09 - mmengine - INFO - Epoch(val) [4][310/313]    eta: 0:00:00  time: 0.0171  data_time: 0.0084  memory: 225  
11/22 16:50:09 - mmengine - INFO - Epoch(val) [4][313/313]    accuracy: 48.9200  data_time: 0.0084  time: 0.0171
11/22 16:50:10 - mmengine - INFO - Epoch(train) [5][  10/1563]  lr: 1.0000e-03  eta: 0:01:27  time: 0.0519  data_time: 0.0133  memory: 382  loss: 1.5881
11/22 16:50:10 - mmengine - INFO - Epoch(train) [5][  20/1563]  lr: 1.0000e-03  eta: 0:01:26  time: 0.0510  data_time: 0.0132  memory: 382  loss: 1.5953
11/22 16:50:11 - mmengine - INFO - Epoch(train) [5][  30/1563]  lr: 1.0000e-03  eta: 0:01:26  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.6398
11/22 16:50:11 - mmengine - INFO - Epoch(train) [5][  40/1563]  lr: 1.0000e-03  eta: 0:01:25  time: 0.0520  data_time: 0.0136  memory: 382  loss: 1.6299
11/22 16:50:12 - mmengine - INFO - Epoch(train) [5][  50/1563]  lr: 1.0000e-03  eta: 0:01:25  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.4690
11/22 16:50:12 - mmengine - INFO - Epoch(train) [5][  60/1563]  lr: 1.0000e-03  eta: 0:01:24  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.5009
11/22 16:50:13 - mmengine - INFO - Epoch(train) [5][  70/1563]  lr: 1.0000e-03  eta: 0:01:24  time: 0.0512  data_time: 0.0133  memory: 382  loss: 1.6991
11/22 16:50:13 - mmengine - INFO - Epoch(train) [5][  80/1563]  lr: 1.0000e-03  eta: 0:01:23  time: 0.0511  data_time: 0.0132  memory: 382  loss: 1.5897
11/22 16:50:14 - mmengine - INFO - Epoch(train) [5][  90/1563]  lr: 1.0000e-03  eta: 0:01:22  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.4838
11/22 16:50:15 - mmengine - INFO - Epoch(train) [5][ 100/1563]  lr: 1.0000e-03  eta: 0:01:22  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.5367
11/22 16:50:15 - mmengine - INFO - Epoch(train) [5][ 110/1563]  lr: 1.0000e-03  eta: 0:01:21  time: 0.0512  data_time: 0.0134  memory: 382  loss: 1.5360
11/22 16:50:16 - mmengine - INFO - Epoch(train) [5][ 120/1563]  lr: 1.0000e-03  eta: 0:01:21  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.4626
11/22 16:50:16 - mmengine - INFO - Epoch(train) [5][ 130/1563]  lr: 1.0000e-03  eta: 0:01:20  time: 0.0512  data_time: 0.0134  memory: 382  loss: 1.6532
11/22 16:50:17 - mmengine - INFO - Epoch(train) [5][ 140/1563]  lr: 1.0000e-03  eta: 0:01:20  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.5336
11/22 16:50:17 - mmengine - INFO - Epoch(train) [5][ 150/1563]  lr: 1.0000e-03  eta: 0:01:19  time: 0.0515  data_time: 0.0136  memory: 382  loss: 1.5675
11/22 16:50:18 - mmengine - INFO - Epoch(train) [5][ 160/1563]  lr: 1.0000e-03  eta: 0:01:18  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.5454
11/22 16:50:18 - mmengine - INFO - Epoch(train) [5][ 170/1563]  lr: 1.0000e-03  eta: 0:01:18  time: 0.0522  data_time: 0.0136  memory: 382  loss: 1.6156
11/22 16:50:19 - mmengine - INFO - Epoch(train) [5][ 180/1563]  lr: 1.0000e-03  eta: 0:01:17  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.5434
11/22 16:50:19 - mmengine - INFO - Epoch(train) [5][ 190/1563]  lr: 1.0000e-03  eta: 0:01:17  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.5017
11/22 16:50:20 - mmengine - INFO - Epoch(train) [5][ 200/1563]  lr: 1.0000e-03  eta: 0:01:16  time: 0.0518  data_time: 0.0134  memory: 382  loss: 1.5192
11/22 16:50:20 - mmengine - INFO - Epoch(train) [5][ 210/1563]  lr: 1.0000e-03  eta: 0:01:16  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.6853
11/22 16:50:21 - mmengine - INFO - Epoch(train) [5][ 220/1563]  lr: 1.0000e-03  eta: 0:01:15  time: 0.0518  data_time: 0.0135  memory: 382  loss: 1.5970
11/22 16:50:21 - mmengine - INFO - Epoch(train) [5][ 230/1563]  lr: 1.0000e-03  eta: 0:01:14  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.4325
11/22 16:50:22 - mmengine - INFO - Epoch(train) [5][ 240/1563]  lr: 1.0000e-03  eta: 0:01:14  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.5267
11/22 16:50:22 - mmengine - INFO - Epoch(train) [5][ 250/1563]  lr: 1.0000e-03  eta: 0:01:13  time: 0.0516  data_time: 0.0136  memory: 382  loss: 1.6820
11/22 16:50:23 - mmengine - INFO - Epoch(train) [5][ 260/1563]  lr: 1.0000e-03  eta: 0:01:13  time: 0.0513  data_time: 0.0133  memory: 382  loss: 1.6840
11/22 16:50:23 - mmengine - INFO - Epoch(train) [5][ 270/1563]  lr: 1.0000e-03  eta: 0:01:12  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.5562
11/22 16:50:24 - mmengine - INFO - Epoch(train) [5][ 280/1563]  lr: 1.0000e-03  eta: 0:01:12  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.4979
11/22 16:50:24 - mmengine - INFO - Epoch(train) [5][ 290/1563]  lr: 1.0000e-03  eta: 0:01:11  time: 0.0513  data_time: 0.0134  memory: 382  loss: 1.7433
11/22 16:50:25 - mmengine - INFO - Epoch(train) [5][ 300/1563]  lr: 1.0000e-03  eta: 0:01:10  time: 0.0513  data_time: 0.0134  memory: 382  loss: 1.4537
11/22 16:50:25 - mmengine - INFO - Epoch(train) [5][ 310/1563]  lr: 1.0000e-03  eta: 0:01:10  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.5039
11/22 16:50:26 - mmengine - INFO - Epoch(train) [5][ 320/1563]  lr: 1.0000e-03  eta: 0:01:09  time: 0.0515  data_time: 0.0136  memory: 382  loss: 1.6451
11/22 16:50:26 - mmengine - INFO - Epoch(train) [5][ 330/1563]  lr: 1.0000e-03  eta: 0:01:09  time: 0.0517  data_time: 0.0134  memory: 382  loss: 1.5821
11/22 16:50:27 - mmengine - INFO - Epoch(train) [5][ 340/1563]  lr: 1.0000e-03  eta: 0:01:08  time: 0.0509  data_time: 0.0137  memory: 382  loss: 1.6438
11/22 16:50:27 - mmengine - INFO - Epoch(train) [5][ 350/1563]  lr: 1.0000e-03  eta: 0:01:08  time: 0.0509  data_time: 0.0134  memory: 382  loss: 1.5743
11/22 16:50:28 - mmengine - INFO - Epoch(train) [5][ 360/1563]  lr: 1.0000e-03  eta: 0:01:07  time: 0.0512  data_time: 0.0134  memory: 382  loss: 1.5997
11/22 16:50:28 - mmengine - INFO - Epoch(train) [5][ 370/1563]  lr: 1.0000e-03  eta: 0:01:06  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.5345
11/22 16:50:29 - mmengine - INFO - Epoch(train) [5][ 380/1563]  lr: 1.0000e-03  eta: 0:01:06  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.3340
11/22 16:50:29 - mmengine - INFO - Epoch(train) [5][ 390/1563]  lr: 1.0000e-03  eta: 0:01:05  time: 0.0518  data_time: 0.0135  memory: 382  loss: 1.5397
11/22 16:50:30 - mmengine - INFO - Epoch(train) [5][ 400/1563]  lr: 1.0000e-03  eta: 0:01:05  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.5086
11/22 16:50:30 - mmengine - INFO - Epoch(train) [5][ 410/1563]  lr: 1.0000e-03  eta: 0:01:04  time: 0.0518  data_time: 0.0135  memory: 382  loss: 1.5779
11/22 16:50:31 - mmengine - INFO - Epoch(train) [5][ 420/1563]  lr: 1.0000e-03  eta: 0:01:04  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.5474
11/22 16:50:32 - mmengine - INFO - Epoch(train) [5][ 430/1563]  lr: 1.0000e-03  eta: 0:01:03  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.3913
11/22 16:50:32 - mmengine - INFO - Epoch(train) [5][ 440/1563]  lr: 1.0000e-03  eta: 0:01:02  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.5450
11/22 16:50:33 - mmengine - INFO - Epoch(train) [5][ 450/1563]  lr: 1.0000e-03  eta: 0:01:02  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.6198
11/22 16:50:33 - mmengine - INFO - Epoch(train) [5][ 460/1563]  lr: 1.0000e-03  eta: 0:01:01  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.5160
11/22 16:50:34 - mmengine - INFO - Epoch(train) [5][ 470/1563]  lr: 1.0000e-03  eta: 0:01:01  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.5863
11/22 16:50:34 - mmengine - INFO - Epoch(train) [5][ 480/1563]  lr: 1.0000e-03  eta: 0:01:00  time: 0.0517  data_time: 0.0134  memory: 382  loss: 1.4299
11/22 16:50:35 - mmengine - INFO - Epoch(train) [5][ 490/1563]  lr: 1.0000e-03  eta: 0:01:00  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.5563
11/22 16:50:35 - mmengine - INFO - Epoch(train) [5][ 500/1563]  lr: 1.0000e-03  eta: 0:00:59  time: 0.0520  data_time: 0.0136  memory: 382  loss: 1.6120
11/22 16:50:36 - mmengine - INFO - Epoch(train) [5][ 510/1563]  lr: 1.0000e-03  eta: 0:00:58  time: 0.0517  data_time: 0.0134  memory: 382  loss: 1.4608
11/22 16:50:36 - mmengine - INFO - Epoch(train) [5][ 520/1563]  lr: 1.0000e-03  eta: 0:00:58  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.4410
11/22 16:50:37 - mmengine - INFO - Epoch(train) [5][ 530/1563]  lr: 1.0000e-03  eta: 0:00:57  time: 0.0515  data_time: 0.0133  memory: 382  loss: 1.5759
11/22 16:50:37 - mmengine - INFO - Epoch(train) [5][ 540/1563]  lr: 1.0000e-03  eta: 0:00:57  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.5766
11/22 16:50:38 - mmengine - INFO - Epoch(train) [5][ 550/1563]  lr: 1.0000e-03  eta: 0:00:56  time: 0.0512  data_time: 0.0134  memory: 382  loss: 1.4889
11/22 16:50:38 - mmengine - INFO - Epoch(train) [5][ 560/1563]  lr: 1.0000e-03  eta: 0:00:56  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.4940
11/22 16:50:39 - mmengine - INFO - Epoch(train) [5][ 570/1563]  lr: 1.0000e-03  eta: 0:00:55  time: 0.0521  data_time: 0.0136  memory: 382  loss: 1.4498
11/22 16:50:39 - mmengine - INFO - Epoch(train) [5][ 580/1563]  lr: 1.0000e-03  eta: 0:00:55  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.5106
11/22 16:50:40 - mmengine - INFO - Epoch(train) [5][ 590/1563]  lr: 1.0000e-03  eta: 0:00:54  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.5412
11/22 16:50:40 - mmengine - INFO - Epoch(train) [5][ 600/1563]  lr: 1.0000e-03  eta: 0:00:53  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.4269
11/22 16:50:41 - mmengine - INFO - Epoch(train) [5][ 610/1563]  lr: 1.0000e-03  eta: 0:00:53  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.4413
11/22 16:50:41 - mmengine - INFO - Epoch(train) [5][ 620/1563]  lr: 1.0000e-03  eta: 0:00:52  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.5007
11/22 16:50:42 - mmengine - INFO - Epoch(train) [5][ 630/1563]  lr: 1.0000e-03  eta: 0:00:52  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.6053
11/22 16:50:42 - mmengine - INFO - Epoch(train) [5][ 640/1563]  lr: 1.0000e-03  eta: 0:00:51  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.4454
11/22 16:50:43 - mmengine - INFO - Epoch(train) [5][ 650/1563]  lr: 1.0000e-03  eta: 0:00:51  time: 0.0513  data_time: 0.0133  memory: 382  loss: 1.4828
11/22 16:50:43 - mmengine - INFO - Epoch(train) [5][ 660/1563]  lr: 1.0000e-03  eta: 0:00:50  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.6222
11/22 16:50:44 - mmengine - INFO - Epoch(train) [5][ 670/1563]  lr: 1.0000e-03  eta: 0:00:49  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.5357
11/22 16:50:44 - mmengine - INFO - Epoch(train) [5][ 680/1563]  lr: 1.0000e-03  eta: 0:00:49  time: 0.0515  data_time: 0.0133  memory: 382  loss: 1.6462
11/22 16:50:45 - mmengine - INFO - Epoch(train) [5][ 690/1563]  lr: 1.0000e-03  eta: 0:00:48  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.4879
11/22 16:50:45 - mmengine - INFO - Epoch(train) [5][ 700/1563]  lr: 1.0000e-03  eta: 0:00:48  time: 0.0497  data_time: 0.0138  memory: 382  loss: 1.5146
11/22 16:50:46 - mmengine - INFO - Epoch(train) [5][ 710/1563]  lr: 1.0000e-03  eta: 0:00:47  time: 0.0501  data_time: 0.0134  memory: 382  loss: 1.5513
11/22 16:50:46 - mmengine - INFO - Epoch(train) [5][ 720/1563]  lr: 1.0000e-03  eta: 0:00:47  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.5761
11/22 16:50:47 - mmengine - INFO - Epoch(train) [5][ 730/1563]  lr: 1.0000e-03  eta: 0:00:46  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.5548
11/22 16:50:47 - mmengine - INFO - Epoch(train) [5][ 740/1563]  lr: 1.0000e-03  eta: 0:00:45  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.5272
11/22 16:50:48 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:50:48 - mmengine - INFO - Epoch(train) [5][ 750/1563]  lr: 1.0000e-03  eta: 0:00:45  time: 0.0520  data_time: 0.0137  memory: 382  loss: 1.5802
11/22 16:50:48 - mmengine - INFO - Epoch(train) [5][ 760/1563]  lr: 1.0000e-03  eta: 0:00:44  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.5568
11/22 16:50:49 - mmengine - INFO - Epoch(train) [5][ 770/1563]  lr: 1.0000e-03  eta: 0:00:44  time: 0.0516  data_time: 0.0135  memory: 382  loss: 1.4462
11/22 16:50:50 - mmengine - INFO - Epoch(train) [5][ 780/1563]  lr: 1.0000e-03  eta: 0:00:43  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.5174
11/22 16:50:50 - mmengine - INFO - Epoch(train) [5][ 790/1563]  lr: 1.0000e-03  eta: 0:00:43  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.5304
11/22 16:50:51 - mmengine - INFO - Epoch(train) [5][ 800/1563]  lr: 1.0000e-03  eta: 0:00:42  time: 0.0513  data_time: 0.0134  memory: 382  loss: 1.3804
11/22 16:50:51 - mmengine - INFO - Epoch(train) [5][ 810/1563]  lr: 1.0000e-03  eta: 0:00:42  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.5559
11/22 16:50:52 - mmengine - INFO - Epoch(train) [5][ 820/1563]  lr: 1.0000e-03  eta: 0:00:41  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.5324
11/22 16:50:52 - mmengine - INFO - Epoch(train) [5][ 830/1563]  lr: 1.0000e-03  eta: 0:00:40  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.6753
11/22 16:50:53 - mmengine - INFO - Epoch(train) [5][ 840/1563]  lr: 1.0000e-03  eta: 0:00:40  time: 0.0523  data_time: 0.0139  memory: 382  loss: 1.4945
11/22 16:50:53 - mmengine - INFO - Epoch(train) [5][ 850/1563]  lr: 1.0000e-03  eta: 0:00:39  time: 0.0512  data_time: 0.0132  memory: 382  loss: 1.5660
11/22 16:50:54 - mmengine - INFO - Epoch(train) [5][ 860/1563]  lr: 1.0000e-03  eta: 0:00:39  time: 0.0519  data_time: 0.0136  memory: 382  loss: 1.5264
11/22 16:50:54 - mmengine - INFO - Epoch(train) [5][ 870/1563]  lr: 1.0000e-03  eta: 0:00:38  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.3853
11/22 16:50:55 - mmengine - INFO - Epoch(train) [5][ 880/1563]  lr: 1.0000e-03  eta: 0:00:38  time: 0.0514  data_time: 0.0133  memory: 382  loss: 1.5576
11/22 16:50:55 - mmengine - INFO - Epoch(train) [5][ 890/1563]  lr: 1.0000e-03  eta: 0:00:37  time: 0.0517  data_time: 0.0135  memory: 382  loss: 1.5043
11/22 16:50:56 - mmengine - INFO - Epoch(train) [5][ 900/1563]  lr: 1.0000e-03  eta: 0:00:36  time: 0.0527  data_time: 0.0141  memory: 382  loss: 1.5948
11/22 16:50:56 - mmengine - INFO - Epoch(train) [5][ 910/1563]  lr: 1.0000e-03  eta: 0:00:36  time: 0.0523  data_time: 0.0138  memory: 382  loss: 1.5114
11/22 16:50:57 - mmengine - INFO - Epoch(train) [5][ 920/1563]  lr: 1.0000e-03  eta: 0:00:35  time: 0.0522  data_time: 0.0136  memory: 382  loss: 1.5999
11/22 16:50:57 - mmengine - INFO - Epoch(train) [5][ 930/1563]  lr: 1.0000e-03  eta: 0:00:35  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.4599
11/22 16:50:58 - mmengine - INFO - Epoch(train) [5][ 940/1563]  lr: 1.0000e-03  eta: 0:00:34  time: 0.0514  data_time: 0.0134  memory: 382  loss: 1.4754
11/22 16:50:58 - mmengine - INFO - Epoch(train) [5][ 950/1563]  lr: 1.0000e-03  eta: 0:00:34  time: 0.0514  data_time: 0.0135  memory: 382  loss: 1.5212
11/22 16:50:59 - mmengine - INFO - Epoch(train) [5][ 960/1563]  lr: 1.0000e-03  eta: 0:00:33  time: 0.0515  data_time: 0.0134  memory: 382  loss: 1.4693
11/22 16:50:59 - mmengine - INFO - Epoch(train) [5][ 970/1563]  lr: 1.0000e-03  eta: 0:00:33  time: 0.0516  data_time: 0.0134  memory: 382  loss: 1.4739
11/22 16:51:00 - mmengine - INFO - Epoch(train) [5][ 980/1563]  lr: 1.0000e-03  eta: 0:00:32  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.5810
11/22 16:51:00 - mmengine - INFO - Epoch(train) [5][ 990/1563]  lr: 1.0000e-03  eta: 0:00:31  time: 0.0518  data_time: 0.0136  memory: 382  loss: 1.4858
11/22 16:51:01 - mmengine - INFO - Epoch(train) [5][1000/1563]  lr: 1.0000e-03  eta: 0:00:31  time: 0.0545  data_time: 0.0174  memory: 382  loss: 1.5966
11/22 16:51:01 - mmengine - INFO - Epoch(train) [5][1010/1563]  lr: 1.0000e-03  eta: 0:00:30  time: 0.0508  data_time: 0.0148  memory: 382  loss: 1.4623
11/22 16:51:02 - mmengine - INFO - Epoch(train) [5][1020/1563]  lr: 1.0000e-03  eta: 0:00:30  time: 0.0517  data_time: 0.0136  memory: 382  loss: 1.6233
11/22 16:51:03 - mmengine - INFO - Epoch(train) [5][1030/1563]  lr: 1.0000e-03  eta: 0:00:29  time: 0.0599  data_time: 0.0184  memory: 382  loss: 1.5946
11/22 16:51:03 - mmengine - INFO - Epoch(train) [5][1040/1563]  lr: 1.0000e-03  eta: 0:00:29  time: 0.0505  data_time: 0.0137  memory: 382  loss: 1.4944
11/22 16:51:04 - mmengine - INFO - Epoch(train) [5][1050/1563]  lr: 1.0000e-03  eta: 0:00:28  time: 0.0520  data_time: 0.0138  memory: 382  loss: 1.4998
11/22 16:51:04 - mmengine - INFO - Epoch(train) [5][1060/1563]  lr: 1.0000e-03  eta: 0:00:28  time: 0.0516  data_time: 0.0137  memory: 382  loss: 1.5143
11/22 16:51:05 - mmengine - INFO - Epoch(train) [5][1070/1563]  lr: 1.0000e-03  eta: 0:00:27  time: 0.0759  data_time: 0.0253  memory: 382  loss: 1.4463
11/22 16:51:06 - mmengine - INFO - Epoch(train) [5][1080/1563]  lr: 1.0000e-03  eta: 0:00:26  time: 0.0761  data_time: 0.0264  memory: 382  loss: 1.4758
11/22 16:51:06 - mmengine - INFO - Epoch(train) [5][1090/1563]  lr: 1.0000e-03  eta: 0:00:26  time: 0.0593  data_time: 0.0199  memory: 382  loss: 1.3308
11/22 16:51:07 - mmengine - INFO - Epoch(train) [5][1100/1563]  lr: 1.0000e-03  eta: 0:00:25  time: 0.0473  data_time: 0.0135  memory: 382  loss: 1.6007
11/22 16:51:07 - mmengine - INFO - Epoch(train) [5][1110/1563]  lr: 1.0000e-03  eta: 0:00:25  time: 0.0497  data_time: 0.0154  memory: 382  loss: 1.4717
11/22 16:51:08 - mmengine - INFO - Epoch(train) [5][1120/1563]  lr: 1.0000e-03  eta: 0:00:24  time: 0.0545  data_time: 0.0158  memory: 382  loss: 1.4900
11/22 16:51:08 - mmengine - INFO - Epoch(train) [5][1130/1563]  lr: 1.0000e-03  eta: 0:00:24  time: 0.0515  data_time: 0.0135  memory: 382  loss: 1.5029
11/22 16:51:09 - mmengine - INFO - Epoch(train) [5][1140/1563]  lr: 1.0000e-03  eta: 0:00:23  time: 0.0518  data_time: 0.0153  memory: 382  loss: 1.4895
11/22 16:51:09 - mmengine - INFO - Epoch(train) [5][1150/1563]  lr: 1.0000e-03  eta: 0:00:23  time: 0.0547  data_time: 0.0166  memory: 382  loss: 1.5550
11/22 16:51:10 - mmengine - INFO - Epoch(train) [5][1160/1563]  lr: 1.0000e-03  eta: 0:00:22  time: 0.0597  data_time: 0.0169  memory: 382  loss: 1.4044
11/22 16:51:10 - mmengine - INFO - Epoch(train) [5][1170/1563]  lr: 1.0000e-03  eta: 0:00:21  time: 0.0580  data_time: 0.0159  memory: 382  loss: 1.4789
11/22 16:51:11 - mmengine - INFO - Epoch(train) [5][1180/1563]  lr: 1.0000e-03  eta: 0:00:21  time: 0.0858  data_time: 0.0300  memory: 382  loss: 1.4462
11/22 16:51:12 - mmengine - INFO - Epoch(train) [5][1190/1563]  lr: 1.0000e-03  eta: 0:00:20  time: 0.0787  data_time: 0.0282  memory: 382  loss: 1.5601
11/22 16:51:13 - mmengine - INFO - Epoch(train) [5][1200/1563]  lr: 1.0000e-03  eta: 0:00:20  time: 0.0636  data_time: 0.0207  memory: 382  loss: 1.5417
11/22 16:51:13 - mmengine - INFO - Epoch(train) [5][1210/1563]  lr: 1.0000e-03  eta: 0:00:19  time: 0.0525  data_time: 0.0158  memory: 382  loss: 1.5232
11/22 16:51:14 - mmengine - INFO - Epoch(train) [5][1220/1563]  lr: 1.0000e-03  eta: 0:00:19  time: 0.0571  data_time: 0.0158  memory: 382  loss: 1.4043
11/22 16:51:14 - mmengine - INFO - Epoch(train) [5][1230/1563]  lr: 1.0000e-03  eta: 0:00:18  time: 0.0576  data_time: 0.0157  memory: 382  loss: 1.5698
11/22 16:51:15 - mmengine - INFO - Epoch(train) [5][1240/1563]  lr: 1.0000e-03  eta: 0:00:18  time: 0.0575  data_time: 0.0156  memory: 382  loss: 1.4904
11/22 16:51:16 - mmengine - INFO - Epoch(train) [5][1250/1563]  lr: 1.0000e-03  eta: 0:00:17  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.5992
11/22 16:51:16 - mmengine - INFO - Epoch(train) [5][1260/1563]  lr: 1.0000e-03  eta: 0:00:16  time: 0.0581  data_time: 0.0157  memory: 382  loss: 1.4858
11/22 16:51:17 - mmengine - INFO - Epoch(train) [5][1270/1563]  lr: 1.0000e-03  eta: 0:00:16  time: 0.0580  data_time: 0.0157  memory: 382  loss: 1.3606
11/22 16:51:17 - mmengine - INFO - Epoch(train) [5][1280/1563]  lr: 1.0000e-03  eta: 0:00:15  time: 0.0582  data_time: 0.0157  memory: 382  loss: 1.6510
11/22 16:51:18 - mmengine - INFO - Epoch(train) [5][1290/1563]  lr: 1.0000e-03  eta: 0:00:15  time: 0.0582  data_time: 0.0157  memory: 382  loss: 1.5346
11/22 16:51:19 - mmengine - INFO - Epoch(train) [5][1300/1563]  lr: 1.0000e-03  eta: 0:00:14  time: 0.0582  data_time: 0.0158  memory: 382  loss: 1.3520
11/22 16:51:19 - mmengine - INFO - Epoch(train) [5][1310/1563]  lr: 1.0000e-03  eta: 0:00:14  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.5014
11/22 16:51:20 - mmengine - INFO - Epoch(train) [5][1320/1563]  lr: 1.0000e-03  eta: 0:00:13  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.4836
11/22 16:51:20 - mmengine - INFO - Epoch(train) [5][1330/1563]  lr: 1.0000e-03  eta: 0:00:13  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.3875
11/22 16:51:21 - mmengine - INFO - Epoch(train) [5][1340/1563]  lr: 1.0000e-03  eta: 0:00:12  time: 0.0582  data_time: 0.0156  memory: 382  loss: 1.4849
11/22 16:51:21 - mmengine - INFO - Epoch(train) [5][1350/1563]  lr: 1.0000e-03  eta: 0:00:11  time: 0.0582  data_time: 0.0158  memory: 382  loss: 1.5298
11/22 16:51:22 - mmengine - INFO - Epoch(train) [5][1360/1563]  lr: 1.0000e-03  eta: 0:00:11  time: 0.0583  data_time: 0.0159  memory: 382  loss: 1.4389
11/22 16:51:23 - mmengine - INFO - Epoch(train) [5][1370/1563]  lr: 1.0000e-03  eta: 0:00:10  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.4141
11/22 16:51:23 - mmengine - INFO - Epoch(train) [5][1380/1563]  lr: 1.0000e-03  eta: 0:00:10  time: 0.0581  data_time: 0.0157  memory: 382  loss: 1.4422
11/22 16:51:24 - mmengine - INFO - Epoch(train) [5][1390/1563]  lr: 1.0000e-03  eta: 0:00:09  time: 0.0582  data_time: 0.0157  memory: 382  loss: 1.4260
11/22 16:51:24 - mmengine - INFO - Epoch(train) [5][1400/1563]  lr: 1.0000e-03  eta: 0:00:09  time: 0.0585  data_time: 0.0161  memory: 382  loss: 1.3820
11/22 16:51:25 - mmengine - INFO - Epoch(train) [5][1410/1563]  lr: 1.0000e-03  eta: 0:00:08  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.4658
11/22 16:51:25 - mmengine - INFO - Epoch(train) [5][1420/1563]  lr: 1.0000e-03  eta: 0:00:07  time: 0.0583  data_time: 0.0159  memory: 382  loss: 1.4120
11/22 16:51:26 - mmengine - INFO - Epoch(train) [5][1430/1563]  lr: 1.0000e-03  eta: 0:00:07  time: 0.0576  data_time: 0.0157  memory: 382  loss: 1.5193
11/22 16:51:27 - mmengine - INFO - Epoch(train) [5][1440/1563]  lr: 1.0000e-03  eta: 0:00:06  time: 0.0585  data_time: 0.0159  memory: 382  loss: 1.5316
11/22 16:51:27 - mmengine - INFO - Epoch(train) [5][1450/1563]  lr: 1.0000e-03  eta: 0:00:06  time: 0.0582  data_time: 0.0158  memory: 382  loss: 1.4528
11/22 16:51:28 - mmengine - INFO - Epoch(train) [5][1460/1563]  lr: 1.0000e-03  eta: 0:00:05  time: 0.0584  data_time: 0.0160  memory: 382  loss: 1.5557
11/22 16:51:28 - mmengine - INFO - Epoch(train) [5][1470/1563]  lr: 1.0000e-03  eta: 0:00:05  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.4487
11/22 16:51:29 - mmengine - INFO - Epoch(train) [5][1480/1563]  lr: 1.0000e-03  eta: 0:00:04  time: 0.0581  data_time: 0.0156  memory: 382  loss: 1.4470
11/22 16:51:30 - mmengine - INFO - Epoch(train) [5][1490/1563]  lr: 1.0000e-03  eta: 0:00:04  time: 0.0581  data_time: 0.0157  memory: 382  loss: 1.4924
11/22 16:51:30 - mmengine - INFO - Epoch(train) [5][1500/1563]  lr: 1.0000e-03  eta: 0:00:03  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.5511
11/22 16:51:31 - mmengine - INFO - Epoch(train) [5][1510/1563]  lr: 1.0000e-03  eta: 0:00:02  time: 0.0580  data_time: 0.0156  memory: 382  loss: 1.4933
11/22 16:51:31 - mmengine - INFO - Epoch(train) [5][1520/1563]  lr: 1.0000e-03  eta: 0:00:02  time: 0.0578  data_time: 0.0156  memory: 382  loss: 1.6460
11/22 16:51:32 - mmengine - INFO - Epoch(train) [5][1530/1563]  lr: 1.0000e-03  eta: 0:00:01  time: 0.0579  data_time: 0.0157  memory: 382  loss: 1.4602
11/22 16:51:32 - mmengine - INFO - Epoch(train) [5][1540/1563]  lr: 1.0000e-03  eta: 0:00:01  time: 0.0584  data_time: 0.0159  memory: 382  loss: 1.4839
11/22 16:51:33 - mmengine - INFO - Epoch(train) [5][1550/1563]  lr: 1.0000e-03  eta: 0:00:00  time: 0.0579  data_time: 0.0156  memory: 382  loss: 1.4155
11/22 16:51:34 - mmengine - INFO - Epoch(train) [5][1560/1563]  lr: 1.0000e-03  eta: 0:00:00  time: 0.0581  data_time: 0.0157  memory: 382  loss: 1.4509
11/22 16:51:34 - mmengine - INFO - Exp name: 20241122_164350
11/22 16:51:34 - mmengine - INFO - Saving checkpoint at 5 epochs
11/22 16:51:35 - mmengine - INFO - Epoch(val) [5][ 10/313]    eta: 0:00:06  time: 0.0206  data_time: 0.0100  memory: 382  
11/22 16:51:35 - mmengine - INFO - Epoch(val) [5][ 20/313]    eta: 0:00:06  time: 0.0204  data_time: 0.0100  memory: 225  
11/22 16:51:35 - mmengine - INFO - Epoch(val) [5][ 30/313]    eta: 0:00:05  time: 0.0208  data_time: 0.0102  memory: 225  
11/22 16:51:35 - mmengine - INFO - Epoch(val) [5][ 40/313]    eta: 0:00:05  time: 0.0205  data_time: 0.0100  memory: 225  
11/22 16:51:35 - mmengine - INFO - Epoch(val) [5][ 50/313]    eta: 0:00:05  time: 0.0206  data_time: 0.0100  memory: 225  
11/22 16:51:36 - mmengine - INFO - Epoch(val) [5][ 60/313]    eta: 0:00:05  time: 0.0203  data_time: 0.0099  memory: 225  
11/22 16:51:36 - mmengine - INFO - Epoch(val) [5][ 70/313]    eta: 0:00:04  time: 0.0205  data_time: 0.0100  memory: 225  
11/22 16:51:36 - mmengine - INFO - Epoch(val) [5][ 80/313]    eta: 0:00:04  time: 0.0204  data_time: 0.0099  memory: 225  
11/22 16:51:36 - mmengine - INFO - Epoch(val) [5][ 90/313]    eta: 0:00:04  time: 0.0203  data_time: 0.0099  memory: 225  
11/22 16:51:36 - mmengine - INFO - Epoch(val) [5][100/313]    eta: 0:00:04  time: 0.0205  data_time: 0.0100  memory: 225  
11/22 16:51:37 - mmengine - INFO - Epoch(val) [5][110/313]    eta: 0:00:04  time: 0.0204  data_time: 0.0099  memory: 225  
11/22 16:51:37 - mmengine - INFO - Epoch(val) [5][120/313]    eta: 0:00:03  time: 0.0204  data_time: 0.0099  memory: 225  
11/22 16:51:37 - mmengine - INFO - Epoch(val) [5][130/313]    eta: 0:00:03  time: 0.0265  data_time: 0.0132  memory: 225  
11/22 16:51:37 - mmengine - INFO - Epoch(val) [5][140/313]    eta: 0:00:03  time: 0.0226  data_time: 0.0110  memory: 225  
11/22 16:51:38 - mmengine - INFO - Epoch(val) [5][150/313]    eta: 0:00:03  time: 0.0210  data_time: 0.0102  memory: 225  
11/22 16:51:38 - mmengine - INFO - Epoch(val) [5][160/313]    eta: 0:00:03  time: 0.0204  data_time: 0.0099  memory: 225  
11/22 16:51:38 - mmengine - INFO - Epoch(val) [5][170/313]    eta: 0:00:03  time: 0.0205  data_time: 0.0099  memory: 225  
11/22 16:51:38 - mmengine - INFO - Epoch(val) [5][180/313]    eta: 0:00:02  time: 0.0206  data_time: 0.0100  memory: 225  
11/22 16:51:38 - mmengine - INFO - Epoch(val) [5][190/313]    eta: 0:00:02  time: 0.0205  data_time: 0.0100  memory: 225  
11/22 16:51:39 - mmengine - INFO - Epoch(val) [5][200/313]    eta: 0:00:02  time: 0.0260  data_time: 0.0125  memory: 225  
11/22 16:51:39 - mmengine - INFO - Epoch(val) [5][210/313]    eta: 0:00:02  time: 0.0223  data_time: 0.0108  memory: 225  
11/22 16:51:39 - mmengine - INFO - Epoch(val) [5][220/313]    eta: 0:00:01  time: 0.0217  data_time: 0.0105  memory: 225  
11/22 16:51:39 - mmengine - INFO - Epoch(val) [5][230/313]    eta: 0:00:01  time: 0.0186  data_time: 0.0091  memory: 225  
11/22 16:51:39 - mmengine - INFO - Epoch(val) [5][240/313]    eta: 0:00:01  time: 0.0180  data_time: 0.0089  memory: 225  
11/22 16:51:40 - mmengine - INFO - Epoch(val) [5][250/313]    eta: 0:00:01  time: 0.0180  data_time: 0.0089  memory: 225  
11/22 16:51:40 - mmengine - INFO - Epoch(val) [5][260/313]    eta: 0:00:01  time: 0.0179  data_time: 0.0088  memory: 225  
11/22 16:51:40 - mmengine - INFO - Epoch(val) [5][270/313]    eta: 0:00:00  time: 0.0180  data_time: 0.0089  memory: 225  
11/22 16:51:40 - mmengine - INFO - Epoch(val) [5][280/313]    eta: 0:00:00  time: 0.0181  data_time: 0.0089  memory: 225  
11/22 16:51:40 - mmengine - INFO - Epoch(val) [5][290/313]    eta: 0:00:00  time: 0.0179  data_time: 0.0088  memory: 225  
11/22 16:51:41 - mmengine - INFO - Epoch(val) [5][300/313]    eta: 0:00:00  time: 0.0180  data_time: 0.0089  memory: 225  
11/22 16:51:41 - mmengine - INFO - Epoch(val) [5][310/313]    eta: 0:00:00  time: 0.0312  data_time: 0.0154  memory: 225  
11/22 16:51:41 - mmengine - INFO - Epoch(val) [5][313/313]    accuracy: 49.1500  data_time: 0.0102  time: 0.0208
MMResNet50(
  (data_preprocessor): BaseDataPreprocessor()
  (resnet): ResNet(
    (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (layer1): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer2): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (3): Bottleneck(
        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer3): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (3): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (4): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (5): Bottleneck(
        (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (layer4): Sequential(
      (0): Bottleneck(
        (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
          (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (1): Bottleneck(
        (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
      (2): Bottleneck(
        (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu): ReLU(inplace=True)
      )
    )
    (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
    (fc): Linear(in_features=2048, out_features=1000, bias=True)
  )
)