fvcore#
fvcore
计算模型参数量和计算量#
fvcore
是易用的工具。fvcore
是 Facebook 开源的轻量级的核心库,它提供了各种计算机视觉框架中常见且基本的功能。其中就包括了统计模型的参数以及 FLOPs 等。
FLOPS:注意全大写,是 floating point operations per second 的缩写,意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。
FLOPs:注意
s
小写,是 floating point operations 的缩写(s
表复数),意指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。
计算量#
import torch
from torchvision.models import resnet50
from fvcore.nn import FlopCountAnalysis, parameter_count_table
# 创建resnet50网络
model = resnet50(num_classes=1000)
# 创建输入网络的tensor
tensor = (torch.rand(1, 3, 224, 224),)
# 分析FLOPs
flops = FlopCountAnalysis(model, tensor)
print("FLOPs: ", flops.total())
Unsupported operator aten::add_ encountered 69 time(s)
Unsupported operator aten::max_pool2d encountered 1 time(s)
FLOPs: 4144854528
参数量#
import torch
from torchvision.models import resnet50
from fvcore.nn import FlopCountAnalysis, parameter_count_table
# 创建resnet50网络
model = resnet50(num_classes=1000)
# 分析parameters
print(parameter_count_table(model))
| name | #elements or shape |
|:-----------------------|:---------------------|
| model | 25.6M |
| conv1 | 9.4K |
| conv1.weight | (64, 3, 7, 7) |
| bn1 | 0.1K |
| bn1.weight | (64,) |
| bn1.bias | (64,) |
| layer1 | 0.2M |
| layer1.0 | 75.0K |
| layer1.0.conv1 | 4.1K |
| layer1.0.bn1 | 0.1K |
| layer1.0.conv2 | 36.9K |
| layer1.0.bn2 | 0.1K |
| layer1.0.conv3 | 16.4K |
| layer1.0.bn3 | 0.5K |
| layer1.0.downsample | 16.9K |
| layer1.1 | 70.4K |
| layer1.1.conv1 | 16.4K |
| layer1.1.bn1 | 0.1K |
| layer1.1.conv2 | 36.9K |
| layer1.1.bn2 | 0.1K |
| layer1.1.conv3 | 16.4K |
| layer1.1.bn3 | 0.5K |
| layer1.2 | 70.4K |
| layer1.2.conv1 | 16.4K |
| layer1.2.bn1 | 0.1K |
| layer1.2.conv2 | 36.9K |
| layer1.2.bn2 | 0.1K |
| layer1.2.conv3 | 16.4K |
| layer1.2.bn3 | 0.5K |
| layer2 | 1.2M |
| layer2.0 | 0.4M |
| layer2.0.conv1 | 32.8K |
| layer2.0.bn1 | 0.3K |
| layer2.0.conv2 | 0.1M |
| layer2.0.bn2 | 0.3K |
| layer2.0.conv3 | 65.5K |
| layer2.0.bn3 | 1.0K |
| layer2.0.downsample | 0.1M |
| layer2.1 | 0.3M |
| layer2.1.conv1 | 65.5K |
| layer2.1.bn1 | 0.3K |
| layer2.1.conv2 | 0.1M |
| layer2.1.bn2 | 0.3K |
| layer2.1.conv3 | 65.5K |
| layer2.1.bn3 | 1.0K |
| layer2.2 | 0.3M |
| layer2.2.conv1 | 65.5K |
| layer2.2.bn1 | 0.3K |
| layer2.2.conv2 | 0.1M |
| layer2.2.bn2 | 0.3K |
| layer2.2.conv3 | 65.5K |
| layer2.2.bn3 | 1.0K |
| layer2.3 | 0.3M |
| layer2.3.conv1 | 65.5K |
| layer2.3.bn1 | 0.3K |
| layer2.3.conv2 | 0.1M |
| layer2.3.bn2 | 0.3K |
| layer2.3.conv3 | 65.5K |
| layer2.3.bn3 | 1.0K |
| layer3 | 7.1M |
| layer3.0 | 1.5M |
| layer3.0.conv1 | 0.1M |
| layer3.0.bn1 | 0.5K |
| layer3.0.conv2 | 0.6M |
| layer3.0.bn2 | 0.5K |
| layer3.0.conv3 | 0.3M |
| layer3.0.bn3 | 2.0K |
| layer3.0.downsample | 0.5M |
| layer3.1 | 1.1M |
| layer3.1.conv1 | 0.3M |
| layer3.1.bn1 | 0.5K |
| layer3.1.conv2 | 0.6M |
| layer3.1.bn2 | 0.5K |
| layer3.1.conv3 | 0.3M |
| layer3.1.bn3 | 2.0K |
| layer3.2 | 1.1M |
| layer3.2.conv1 | 0.3M |
| layer3.2.bn1 | 0.5K |
| layer3.2.conv2 | 0.6M |
| layer3.2.bn2 | 0.5K |
| layer3.2.conv3 | 0.3M |
| layer3.2.bn3 | 2.0K |
| layer3.3 | 1.1M |
| layer3.3.conv1 | 0.3M |
| layer3.3.bn1 | 0.5K |
| layer3.3.conv2 | 0.6M |
| layer3.3.bn2 | 0.5K |
| layer3.3.conv3 | 0.3M |
| layer3.3.bn3 | 2.0K |
| layer3.4 | 1.1M |
| layer3.4.conv1 | 0.3M |
| layer3.4.bn1 | 0.5K |
| layer3.4.conv2 | 0.6M |
| layer3.4.bn2 | 0.5K |
| layer3.4.conv3 | 0.3M |
| layer3.4.bn3 | 2.0K |
| layer3.5 | 1.1M |
| layer3.5.conv1 | 0.3M |
| layer3.5.bn1 | 0.5K |
| layer3.5.conv2 | 0.6M |
| layer3.5.bn2 | 0.5K |
| layer3.5.conv3 | 0.3M |
| layer3.5.bn3 | 2.0K |
| layer4 | 15.0M |
| layer4.0 | 6.0M |
| layer4.0.conv1 | 0.5M |
| layer4.0.bn1 | 1.0K |
| layer4.0.conv2 | 2.4M |
| layer4.0.bn2 | 1.0K |
| layer4.0.conv3 | 1.0M |
| layer4.0.bn3 | 4.1K |
| layer4.0.downsample | 2.1M |
| layer4.1 | 4.5M |
| layer4.1.conv1 | 1.0M |
| layer4.1.bn1 | 1.0K |
| layer4.1.conv2 | 2.4M |
| layer4.1.bn2 | 1.0K |
| layer4.1.conv3 | 1.0M |
| layer4.1.bn3 | 4.1K |
| layer4.2 | 4.5M |
| layer4.2.conv1 | 1.0M |
| layer4.2.bn1 | 1.0K |
| layer4.2.conv2 | 2.4M |
| layer4.2.bn2 | 1.0K |
| layer4.2.conv3 | 1.0M |
| layer4.2.bn3 | 4.1K |
| fc | 2.0M |
| fc.weight | (1000, 2048) |
| fc.bias | (1000,) |