vta.top.bitpack 源代码
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=ungrouped-imports, unsupported-binary-operation
"""Bit packing operators"""
from __future__ import absolute_import as _abs
import tvm
from tvm import te
from tvm.topi import utils
from tvm.relay.op.op import register_compute, register_injective_schedule
from tvm.relay.op.op import register_pattern, OpPattern
[文档]
def bitpack(data, bits, pack_type="int8", name="bitpack"):
"""Packs lowest dimension into format needed by VTA
Parameters
----------
pack_axis : int
index of the axis to pack in data
bit_axis : int
index of axis to place bit axis in resulting packed data
Returns
-------
packed : Tensor
The packed tensor.
"""
shape_vec = list(data.shape)
if pack_type == "int8":
data_width = 8
elif pack_type == "int16":
data_width = 16
elif pack_type == "int32":
data_width = 32
else:
raise RuntimeError("Unknown pack type %s" % pack_type)
assert data_width % bits == 0
lanes = data_width // bits
# Data must be in multiples of the data_width
assert utils.get_const_int(shape_vec[-1]) % lanes == 0, "Not a multiple of word size"
shape_vec[-1] = shape_vec[-1] // lanes
oshape = tuple(shape_vec)
def _bitpack(*indices):
ret = None
mask = tvm.tir.const((1 << bits) - 1, pack_type)
for k in range(lanes):
idx = list(indices)
idx[-1] = idx[-1] * lanes + k
elem = data(*idx).astype(pack_type)
if k == 0:
ret = elem & mask
else:
val = (elem & mask) << tvm.tir.const(k * bits, pack_type)
ret = ret | val
return ret
return te.compute(oshape, _bitpack, name=name, tag="bitpack")
@register_compute("bitpack", level=15)
[文档]
def compute_bitpack(attrs, inputs):
lanes = attrs.lanes
dtype = inputs[0].dtype
assert dtype == "int8"
width = 8
assert width % lanes == 0
bits = 8 // lanes
return bitpack(inputs[0], bits, dtype)
register_injective_schedule("bitpack")
register_pattern("bitpack", OpPattern.INJECTIVE)