tvm.topi.nn.softmax 源代码

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name, pointless-exception-statement
"""TVM operator for softmax and log_softmax compute."""
from __future__ import absolute_import
import tvm
from tvm import te, topi


[文档] @tvm.te.tag_scope(tag="softmax_output") def softmax(x, axis=-1): """Perform softmax activation on the data. Parameters ---------- data : tvm.te.Tensor can be any dimension axis : int channel axis Returns ------- output : tvm.te.Tensor output shape is the same as input """ return softmax_common(x, axis, False)
[文档] @tvm.te.tag_scope(tag="fast_softmax_output") def fast_softmax(x, axis=-1): """Perform softmax activation on the data. Use approximation to compute exponent for faster speed. Parameters ---------- data : tvm.te.Tensor can be any dimension axis : int channel axis Returns ------- output : tvm.te.Tensor output shape is the same as input """ return softmax_common(x, axis, True)
[文档] def softmax_common(x, axis, use_fast_exp): """The common part of softmax and fast_softmax""" shape = x.shape if axis < 0: axis = len(shape) + axis if axis >= len(shape): ValueError("axis parameter should be less than input dim") k1 = te.reduce_axis((0, shape[axis]), name="k") k2 = te.reduce_axis((0, shape[axis]), name="k") def insert_reduce_index(indices, reduce_index): return indices[:axis] + (reduce_index,) + indices[axis:] def get_non_reduce_indices(indices): return tuple([var for (i, var) in enumerate(indices) if i != axis]) def _compute_max(*indices): eval_range = insert_reduce_index(indices, k1) return tvm.te.max(x[eval_range], axis=k1) def _compute_delta(max_elem, *indices): non_reduce_indices = get_non_reduce_indices(indices) return x[indices] - max_elem[non_reduce_indices] def _compute_exp(max_elem, *indices): non_reduce_indices = get_non_reduce_indices(indices) return te.exp(x[indices] - max_elem[non_reduce_indices]) def _compute_expsum(exp, *indices): eval_range = insert_reduce_index(indices, k2) return te.sum(exp[eval_range], axis=k2) def _normalize(exp, expsum, *indices): non_reduce_indices = get_non_reduce_indices(indices) return exp[indices] / expsum[non_reduce_indices] reduced_shape = tuple([dim for (i, dim) in enumerate(shape) if i != axis]) max_elem = te.compute(reduced_shape, _compute_max, name="T_softmax_maxelem") if use_fast_exp: delta = te.compute( shape, lambda *indices: _compute_delta(max_elem, *indices), name="T_softmax_delta" ) exp = topi.math.fast_exp(delta) else: exp = te.compute( shape, lambda *indices: _compute_exp(max_elem, *indices), name="T_softmax_exp" ) expsum = te.compute( reduced_shape, lambda *indices: _compute_expsum(exp, *indices), name="T_softmax_expsum" ) return te.compute( shape, lambda *indices: _normalize(exp, expsum, *indices), name="T_softmax_norm", attrs={"axis": axis}, )
[文档] @tvm.te.tag_scope(tag="log_softmax_output") def log_softmax(x, axis=-1): """Perform log softmax activation on the data Parameters ---------- data : tvm.te.Tensor N-D input data Returns ------- output : tvm.te.Tensor N-D output with same shape """ shape = x.shape if axis < 0: axis = len(shape) + axis if axis >= len(shape): ValueError("axis parameter should be less than input dim") k1 = te.reduce_axis((0, shape[axis]), name="k") k2 = te.reduce_axis((0, shape[axis]), name="k") def insert_reduce_index(indices, reduce_index): return indices[:axis] + (reduce_index,) + indices[axis:] def get_non_reduce_indices(indices): return tuple([var for (i, var) in enumerate(indices) if i != axis]) def _compute_max(*indices): eval_range = insert_reduce_index(indices, k1) return tvm.te.max(x[eval_range], axis=k1) def _compute_expsum(max_elem, *indices): eval_range = insert_reduce_index(indices, k2) return te.sum(te.exp(x[eval_range] - max_elem[indices]), axis=k2) def _normalize(max_elem, expsum, *indices): non_reduce_indices = get_non_reduce_indices(indices) return x[indices] - max_elem[non_reduce_indices] - te.log(expsum[non_reduce_indices]) reduced_shape = tuple([dim for (i, dim) in enumerate(shape) if i != axis]) max_elem = te.compute(reduced_shape, _compute_max, name="T_softmax_maxelem") expsum = te.compute(reduced_shape, lambda *indices: _compute_expsum(max_elem, *indices)) return te.compute( shape, lambda *indices: _normalize(max_elem, expsum, *indices), attrs={"axis": axis}, )