TVM FuseOps 变换#
算子融合是一种优化技术,通过将多个连续的算子合并为单一的算子,减少内存传输和提高计算效率。
测试涵盖了各种融合场景,包括简单算子融合、卷积算子融合、元组算子融合等。
import tvm
import tvm.testing
from tvm import relax, topi
from tvm.script import ir as I, relax as R, tir as T
def _check(mod_actual, mod_expected):
"""验证算子融合结果是否符合预期
参数:
mod_actual: 实际的IR模块,将经过算子融合转换
mod_expected: 预期的IR模块,作为参考标准
"""
# 为实际模块添加TIR算子模式注解并执行融合
mod_actual = relax.transform.AnnotateTIROpPattern()(mod_actual)
mod_actual = relax.transform.FuseOps()(mod_actual)
# 为预期模块添加TIR算子模式注解(但不执行融合)
mod_expected = relax.transform.AnnotateTIROpPattern()(mod_expected)
# 断言两个模块在结构上相等
tvm.ir.assert_structural_equal(mod_actual, mod_expected)
简单算子融合测试#
测试基本的算子融合功能:将 add、exp 和 squeeze 三个连续的算子融合为单一算子。
这是基础测试,验证融合机制的正确性。
def before():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor([10, 20], "float32"))
with bb.function("main", [x]):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv1 = bb.emit_te(topi.exp, lv0)
gv = bb.emit_output(bb.call_te(topi.squeeze, lv1))
bb.emit_func_output(gv)
return bb.get()
# 为实际模块添加 TIR 算子模式注解并执行融合
mod_actual = before()
mod_actual = relax.transform.AnnotateTIROpPattern()(mod_actual)
mod_actual = relax.transform.FuseOps()(mod_actual)
mod_actual.show()
测试卷积算子融合的情况#
该测试验证卷积算子与加法算子的融合逻辑,特别是在存在多条计算路径的情况下,融合是否能够正确进行。测试会验证不同数据类型(float32, float16, int8)下的融合结果。
def before(dtype):
"""创建融合前的计算图
参数:
dtype: 数据类型,如'float32', 'float16', 'int8'
返回:
融合前的Relax模块
"""
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, 16, 64, 64), dtype)) # 输入张量
w1 = relax.Var("w1", R.Tensor((16, 16, 3, 3), dtype)) # 卷积核1
w2 = relax.Var("w2", R.Tensor((16, 16, 1, 1), dtype)) # 卷积核2
w3 = relax.Var("w3", R.Tensor((16, 16, 3, 3), dtype)) # 卷积核3
with bb.function("main", [x, w1, w2, w3]):
with bb.dataflow():
# 输入加偏置
lv0 = bb.emit_te(topi.add, x, relax.const(1, dtype))
# 第一卷积层
lv1 = bb.emit_te(topi.nn.conv2d, lv0, w1, strides=1, padding=1, dilation=1)
# 这是下一个支配节点
lv2 = bb.emit_te(topi.add, relax.const(1, dtype), lv1)
lv3 = bb.emit_te(topi.add, lv1, lv2)
# 第二条路径
lv4 = bb.emit_te(topi.nn.conv2d, lv3, w2, strides=1, padding=0, dilation=1)
lv5 = bb.emit_te(topi.nn.conv2d, lv3, w3, strides=1, padding=1, dilation=1)
# 合并两条路径的结果
gv = bb.emit_output(bb.call_te(topi.add, lv4, lv5))
bb.emit_func_output(gv)
return bb.get()
def expected(dtype):
"""创建融合后的预期计算图
参数:
dtype: 数据类型,如'float32', 'float16', 'int8'
返回:
融合后的Relax模块
"""
bb = relax.BlockBuilder()
# 融合函数1: conv2d + add1 + add2
x = relax.Var("x", R.Tensor((1, 16, 64, 64), dtype))
w = relax.Var("w", R.Tensor((16, 16, 3, 3), dtype))
p0 = relax.Var("p0", R.Tensor((), dtype))
with bb.function(
"fused_conv2d_add1_add2", [x, w, p0], attrs={"Primitive": True}, private=True
):
with bb.dataflow():
lv0 = bb.emit_te(
topi.nn.conv2d,
x,
w,
strides=1,
padding=1,
dilation=1,
primfunc_name_hint="conv2d",
)
lv1 = bb.emit_te(topi.add, p0, lv0, primfunc_name_hint="add1")
gv = bb.emit_output(bb.call_te(topi.add, lv0, lv1, primfunc_name_hint="add2"))
bb.emit_func_output(gv)
# 融合函数2: conv2d1 + add2
x = relax.Var("x", R.Tensor((1, 16, 64, 64), dtype))
w = relax.Var("w", R.Tensor((16, 16, 1, 1), dtype))
y = relax.Var("y", R.Tensor((1, 16, 64, 64), dtype))
with bb.function("fused_conv2d1_add2", [x, w, y], attrs={"Primitive": True}, private=True):
with bb.dataflow():
lv0 = bb.emit_te(
topi.nn.conv2d,
x,
w,
strides=1,
padding=0,
dilation=1,
primfunc_name_hint="conv2d1",
)
gv = bb.emit_output(bb.call_te(topi.add, lv0, y, primfunc_name_hint="add2"))
bb.emit_func_output(gv)
# 获取融合函数的全局变量
mod = bb.get()
fused_conv2d_add1_add2 = mod.get_global_var("fused_conv2d_add1_add2")
fused_conv2d1_add2 = mod.get_global_var("fused_conv2d1_add2")
# 主函数
x = relax.Var("x", R.Tensor((1, 16, 64, 64), dtype))
w1 = relax.Var("w1", R.Tensor((16, 16, 3, 3), dtype))
w2 = relax.Var("w2", R.Tensor((16, 16, 1, 1), dtype))
w3 = relax.Var("w3", R.Tensor((16, 16, 3, 3), dtype))
with bb.function("main", [x, w1, w2, w3]):
with bb.dataflow():
# 输入加偏置
lv0 = bb.emit_te(topi.add, x, relax.const(1, dtype))
# 调用融合函数1
lv1 = bb.emit(relax.Call(fused_conv2d_add1_add2, [lv0, w1, relax.const(1, dtype)]))
# 未融合的卷积层
lv2 = bb.emit_te(
topi.nn.conv2d,
lv1,
w3,
strides=1,
padding=1,
dilation=1,
)
# 调用融合函数2
gv = bb.emit_output(relax.Call(fused_conv2d1_add2, [lv1, w2, lv2]))
bb.emit_func_output(gv)
return bb.get()
# 验证不同数据类型下的融合结果
_check(before("float32"), expected("float32"))
_check(before("float16"), expected("float16"))
_check(before("int8"), expected("int8"))
涉及连接算子和元组节点的融合测试#
测试包含 concatenate 算子和 Tuple 节点的融合场景。
具体测试 max_pool2d、upsampling、concatenate 和 add 四个算子的融合。此测试验证了包含复杂数据结构(如元组)的算子融合机制。
def before():
"""创建融合前的计算图
返回:
融合前的Relax模块,包含max_pool2d、upsampling、concatenate和add算子
"""
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32")) # 输入张量 (批次大小, 通道数, 高度, 宽度)
with bb.function("main", [x]):
with bb.dataflow():
# 最大池化操作,2x2核,步长2,无填充
lv0 = bb.emit_te(
topi.nn.pool2d,
x,
kernel=(2, 2),
stride=(2, 2),
dilation=(1, 1),
padding=(0, 0, 0, 0),
pool_type="max",
)
# 上采样操作,将特征图大小放大2倍
lv1 = bb.emit_te(topi.nn.upsampling, lv0, scale_h=2.0, scale_w=2.0)
# 在通道维度(axis=1)上拼接上采样结果和原始输入
lv2 = bb.emit_te(topi.concatenate, (lv1, x), axis=1)
# 对拼接结果加1
gv = bb.emit_output(bb.call_te(topi.add, lv2, relax.const(1, "float32")))
bb.emit_func_output(gv)
return bb.get()
def expected():
"""
创建融合后的计算图,验证算子融合结果
返回:
relax.IRModule: 融合后的计算图模块,包含融合的上采样、拼接和加法算子
"""
bb = relax.BlockBuilder()
# 融合函数定义 - 将上采样、拼接和加法算子融合为一个函数
# 输入变量定义
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32")) # 输入张量 (批次大小, 通道数, 高度, 宽度)
w = relax.Var("w", R.Tensor((1, 16, 32, 32), "float32")) # 权重张量 (输出通道, 输入通道, 高度, 宽度)
p0 = relax.Var("p0", R.Tensor((), "float32")) # 标量参数
# 定义融合函数 fused_upsampling_concatenate_add
with bb.function(
"fused_upsampling_concatenate_add", [w, x, p0], attrs={"Primitive": True}, private=True
):
with bb.dataflow():
# 上采样操作:将权重张量大小放大2倍
lv0 = bb.emit_te(topi.nn.upsampling, w, scale_h=2.0, scale_w=2.0)
# 拼接操作:在通道维度(axis=1)上拼接上采样结果和原始输入
lv1 = bb.emit_te(topi.concatenate, (lv0, x), axis=1)
# 加法操作:对拼接结果加标量参数p0
gv = bb.emit_output(bb.call_te(topi.add, lv1, p0))
bb.emit_func_output(gv)
# 获取融合函数的全局变量引用
fused_upsampling_concatenate_add = bb.get().get_global_var(
"fused_upsampling_concatenate_add"
)
# 主函数定义
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32")) # 主函数输入张量
with bb.function("main", [x]):
with bb.dataflow():
# 最大池化操作:2x2核,步长2,无填充
lv0 = bb.emit_te(
topi.nn.pool2d,
x,
kernel=(2, 2),
stride=(2, 2),
dilation=(1, 1),
padding=(0, 0, 0, 0),
pool_type="max",
)
# 调用融合函数,传入池化结果、原始输入和常数1
gv = bb.emit_output(
relax.Call(
fused_upsampling_concatenate_add, (lv0, x, relax.const(1, "float32"))
)
)
bb.emit_func_output(gv)
return bb.get()
_check(before(), expected())
测试当 Tuple 节点是其组中的根节点时的算子融合情况#
此测试验证当数据流向以 Tuple 节点为根时,融合逻辑是否正确处理这种情况。
预期结果:由于 Tuple 节点作为输出根节点,不会发生算子融合。
def before():
"""
创建融合前的计算图
返回:
relax.IRModule: 包含池化、上采样和Tuple输出的计算图模块
"""
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32")) # 输入张量 (批次大小, 通道数, 高度, 宽度)
with bb.function("main", [x]):
with bb.dataflow():
# 最大池化操作:2x2核,步长2,无填充
lv0 = bb.emit_te(
topi.nn.pool2d,
x,
kernel=(2, 2),
stride=(2, 2),
dilation=(1, 1),
padding=(0, 0, 0, 0),
pool_type="max",
)
# 上采样操作:将池化结果大小放大2倍
lv1 = bb.emit_te(topi.nn.upsampling, lv0, scale_h=2.0, scale_w=2.0)
# 输出Tuple节点:包含上采样结果和原始输入
gv = bb.emit_output((lv1, x))
bb.emit_func_output(gv)
return bb.get()
# 预期融合不会发生变化,因此将原始图与自身比较
_check(before(), before())
元组获取与元素级算子的融合测试#
测试从元组中获取元素并进行元素级算子的融合场景。
具体测试 split、TupleGetItem、sigmoid、tanh、exp、multiply 和 add 等算子的融合。
此测试验证了元组算子与元素级计算的融合机制。
def before(dim: int):
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, dim), "float32"))
w = relax.Var("w", R.Tensor((3 * dim, dim), "float32"))
with bb.function("main", [x, w]):
with bb.dataflow():
lv0 = bb.emit_te(topi.nn.dense, x, w)
lv1 = bb.emit_te(topi.split, lv0, indices_or_sections=3, axis=1)
lv2 = bb.emit(relax.TupleGetItem(lv1, 0))
lv3 = bb.emit_te(topi.sigmoid, lv2)
lv4 = bb.emit(relax.TupleGetItem(lv1, 1))
lv5 = bb.emit_te(topi.tanh, lv4)
lv6 = bb.emit(relax.TupleGetItem(lv1, 2))
lv7 = bb.emit_te(topi.exp, lv6)
lv8 = bb.emit_te(topi.multiply, lv5, lv7)
gv = bb.emit_output(bb.call_te(topi.add, lv3, lv8))
bb.emit_func_output(gv)
return bb.get()
def expected(dim: int):
bb = relax.BlockBuilder()
# Grouped function
dense = relax.Var("dense", R.Tensor((1, 3 * dim), "float32"))
with bb.function(
"fused_split_sigmoid_tanh_exp_multiply_add",
[dense],
attrs={"Primitive": True},
private=True,
):
with bb.dataflow():
lv0 = bb.emit_te(topi.split, dense, indices_or_sections=3, axis=1)
lv1 = bb.emit(relax.TupleGetItem(lv0, 0))
lv2 = bb.emit_te(topi.sigmoid, lv1)
lv3 = bb.emit(relax.TupleGetItem(lv0, 1))
lv4 = bb.emit_te(topi.tanh, lv3)
lv5 = bb.emit(relax.TupleGetItem(lv0, 2))
lv6 = bb.emit_te(topi.exp, lv5)
lv7 = bb.emit_te(topi.multiply, lv4, lv6)
gv = bb.emit_output(bb.call_te(topi.add, lv2, lv7))
bb.emit_func_output(gv)
# Get the global variables of the grouped functions
fused_split_sigmoid_tanh_exp_multiply_add = bb.get().get_global_var(
"fused_split_sigmoid_tanh_exp_multiply_add"
)
# Main function
x = relax.Var("x", R.Tensor((1, dim), "float32"))
w = relax.Var("w", R.Tensor((3 * dim, dim), "float32"))
with bb.function("main", [x, w]):
with bb.dataflow():
lv0 = bb.emit_te(topi.nn.dense, x, w)
gv = bb.emit_output(relax.Call(fused_split_sigmoid_tanh_exp_multiply_add, (lv0,)))
bb.emit_func_output(gv)
return bb.get()
dim = 10
_check(before(dim), expected(dim))
元组获取作为根节点的融合测试#
测试 TupleGetItem 算子作为根节点的融合场景。
具体测试 split 和 TupleGetItem 的融合,以及后续的 dense 算子。
此测试验证了元组算子作为根节点时的融合行为。
def before(dim: int):
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, 3 * dim), "float32"))
w = relax.Var("w", R.Tensor((dim, dim), "float32"))
with bb.function("main", [x, w]):
with bb.dataflow():
lv0 = bb.emit_te(topi.split, x, indices_or_sections=3, axis=1)
lv1 = bb.emit(relax.TupleGetItem(lv0, 0))
gv = bb.emit_output(bb.call_te(topi.nn.dense, lv1, w))
bb.emit_func_output(gv)
return bb.get()
def expected(dim: int):
bb = relax.BlockBuilder()
# Grouped function
x = relax.Var("x", R.Tensor((1, 3 * dim), "float32"))
with bb.function("fused_split", [x], attrs={"Primitive": True}, private=True):
with bb.dataflow():
lv0 = bb.emit_te(topi.split, x, indices_or_sections=3, axis=1)
gv = bb.emit_output(relax.TupleGetItem(lv0, 0))
bb.emit_func_output(gv)
# Get the global variables of the grouped functions
fused_split = bb.get().get_global_var("fused_split")
# Main function
x = relax.Var("x", R.Tensor((1, 3 * dim), "float32"))
w = relax.Var("w", R.Tensor((dim, dim), "float32"))
with bb.function("main", [x, w]):
with bb.dataflow():
lv0 = bb.emit(relax.Call(fused_split, (x,)))
gv = bb.emit_output(bb.call_te(topi.nn.dense, lv0, w))
bb.emit_func_output(gv)
return bb.get()
dim = 10
_check(before(dim), expected(dim))
元组作为中间节点的融合测试#
测试元组作为中间节点的融合场景。
具体测试多个 squeeze、add 和 concatenate 算子的融合。
此测试验证了包含多个中间元组节点的复杂计算图的融合机制。
def before():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
with bb.function("main", [x]):
with bb.dataflow():
lv0 = bb.emit_te(topi.squeeze, x)
lv1 = bb.emit_te(topi.add, lv0, relax.const(1, "float32"))
lv2 = bb.emit_te(topi.squeeze, lv0)
lv3 = bb.emit_te(topi.add, lv2, relax.const(1, "float32"))
lv4 = bb.emit_te(topi.add, lv3, relax.const(1, "float32"))
lv5 = bb.emit_te(topi.add, lv0, relax.const(1, "float32"))
lv6 = bb.emit_te(topi.concatenate, (lv1, lv4, lv5), axis=1)
lv7 = bb.emit_te(topi.squeeze, lv6)
gv = bb.emit_output(bb.call_te(topi.add, lv7, relax.const(1, "float32")))
bb.emit_func_output(gv)
return bb.get()
def expected():
bb = relax.BlockBuilder()
# Grouped function
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
p0 = relax.Var("p0", R.Tensor((), "float32"))
p1 = relax.Var("p1", R.Tensor((), "float32"))
p2 = relax.Var("p2", R.Tensor((), "float32"))
p3 = relax.Var("p3", R.Tensor((), "float32"))
p4 = relax.Var("p4", R.Tensor((), "float32"))
with bb.function(
"fused_squeeze_add_squeeze1_add_add_add_concatenate_squeeze2_add1",
[x, p0, p1, p2, p3, p4],
attrs={"Primitive": True},
private=True,
):
with bb.dataflow():
lv0 = bb.emit_te(topi.squeeze, x)
lv1 = bb.emit_te(topi.add, lv0, p0)
lv2 = bb.emit_te(topi.squeeze, lv0)
lv3 = bb.emit_te(topi.add, lv2, p1)
lv4 = bb.emit_te(topi.add, lv3, p2)
lv5 = bb.emit_te(topi.add, lv0, p3)
lv6 = bb.emit_te(topi.concatenate, (lv1, lv4, lv5), axis=1)
lv7 = bb.emit_te(topi.squeeze, lv6)
gv = bb.emit_output(bb.call_te(topi.add, lv7, p4))
bb.emit_func_output(gv)
# Get the global variables of the grouped functions
fused_func = bb.get().get_global_var(
"fused_squeeze_add_squeeze1_add_add_add_concatenate_squeeze2_add1"
)
# Main func
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
with bb.function("main", [x]):
with bb.dataflow():
gv = bb.emit_output(
relax.Call(
fused_func,
(
x,
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
),
)
)
bb.emit_func_output(gv)
return bb.get()
_check(before(), expected())
连续元组算子的融合测试#
测试连续元组算子的融合场景。
具体测试多次 add、concatenate、pool2d 等算子的融合。此测试验证了包含重复模式和多层次元组算子的复杂计算图的融合机制。
def before():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
with bb.function("main", [x]):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv1 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv2 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv3 = bb.emit_te(topi.concatenate, (lv0, lv1, lv2), axis=1)
lv4 = bb.emit_te(topi.add, lv3, relax.const(1, "float32"))
lv5 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv6 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv7 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv8 = bb.emit_te(topi.concatenate, (lv5, lv6, lv7), axis=1)
lv9 = bb.emit_te(topi.add, lv8, relax.const(1, "float32"))
lv10 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv11 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv12 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv13 = bb.emit_te(topi.concatenate, (lv10, lv11, lv12), axis=1)
lv14 = bb.emit_te(topi.add, lv13, relax.const(1, "float32"))
lv15 = bb.emit_te(topi.concatenate, (lv4, lv9, lv14), axis=1)
lv16 = bb.emit_te(
topi.nn.pool2d,
lv15,
kernel=(2, 2),
stride=(2, 2),
dilation=(1, 1),
padding=(0, 0, 0, 0),
pool_type="max",
)
lv17 = bb.emit_te(topi.add, lv16, relax.const(1, "float32"))
lv18 = bb.emit_te(topi.add, lv17, relax.const(1, "float32"))
gv = bb.emit_output((lv17, lv18))
bb.emit_func_output(gv)
return bb.get()
def expected():
bb = relax.BlockBuilder()
# Grouped function 1
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
p0 = relax.Var("p0", R.Tensor((), "float32"))
p1 = relax.Var("p1", R.Tensor((), "float32"))
p2 = relax.Var("p2", R.Tensor((), "float32"))
p3 = relax.Var("p3", R.Tensor((), "float32"))
p4 = relax.Var("p4", R.Tensor((), "float32"))
p5 = relax.Var("p5", R.Tensor((), "float32"))
p6 = relax.Var("p6", R.Tensor((), "float32"))
p7 = relax.Var("p7", R.Tensor((), "float32"))
p8 = relax.Var("p8", R.Tensor((), "float32"))
p9 = relax.Var("p9", R.Tensor((), "float32"))
p10 = relax.Var("p10", R.Tensor((), "float32"))
p11 = relax.Var("p11", R.Tensor((), "float32"))
with bb.function(
"fused_add_add_add_concatenate_add1_add_add_add_concatenate_add1_add_add_add_concatenate_add1_concatenate1",
[x, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11],
attrs={"Primitive": True},
private=True,
):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, p0)
lv1 = bb.emit_te(topi.add, x, p1)
lv2 = bb.emit_te(topi.add, x, p2)
lv3 = bb.emit_te(topi.concatenate, (lv0, lv1, lv2), axis=1)
lv4 = bb.emit_te(topi.add, lv3, p3)
lv5 = bb.emit_te(topi.add, x, p4)
lv6 = bb.emit_te(topi.add, x, p5)
lv7 = bb.emit_te(topi.add, x, p6)
lv8 = bb.emit_te(topi.concatenate, (lv5, lv6, lv7), axis=1)
lv9 = bb.emit_te(topi.add, lv8, p7)
lv10 = bb.emit_te(topi.add, x, p8)
lv11 = bb.emit_te(topi.add, x, p9)
lv12 = bb.emit_te(topi.add, x, p10)
lv13 = bb.emit_te(topi.concatenate, (lv10, lv11, lv12), axis=1)
lv14 = bb.emit_te(topi.add, lv13, p11)
gv = bb.emit_output(bb.call_te(topi.concatenate, (lv4, lv9, lv14), axis=1))
bb.emit_func_output(gv)
# Grouped function 2
concat = relax.Var("concat", R.Tensor((1, 144, 64, 64), "float32"))
p0 = relax.Var("p0", R.Tensor((), "float32"))
with bb.function(
"fused_pool2d_add2", [concat, p0], attrs={"Primitive": True}, private=True
):
with bb.dataflow():
lv0 = bb.emit_te(
topi.nn.pool2d,
concat,
kernel=(2, 2),
stride=(2, 2),
dilation=(1, 1),
padding=(0, 0, 0, 0),
pool_type="max",
)
gv = bb.emit_output(bb.call_te(topi.add, lv0, p0))
bb.emit_func_output(gv)
# Get the global variables of the grouped functions
mod = bb.get()
fused_func1 = mod.get_global_var(
"fused_add_add_add_concatenate_add1_add_add_add_concatenate_add1_add_add_add_concatenate_add1_concatenate1"
)
fused_func2 = mod.get_global_var("fused_pool2d_add2")
# Main function
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
with bb.function("main", [x]):
with bb.dataflow():
lv0 = bb.emit(
relax.Call(
fused_func1,
(
x,
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
relax.const(1, "float32"),
),
)
)
lv1 = bb.emit(relax.Call(fused_func2, (lv0, relax.const(1, "float32"))))
lv2 = bb.emit_te(topi.add, lv1, relax.const(1, "float32"))
gv = bb.emit_output((lv1, lv2))
bb.emit_func_output(gv)
return bb.get()
_check(before(), expected())
测试类似 Inception 网络结构的算子融合情况#
该测试验证具有分支结构的网络(如Inception模块)中,卷积和激活函数等算子的融合逻辑是否正确。
def before():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
w0 = relax.Var("w0", R.Tensor((16, 16, 3, 3), "float32"))
w1 = relax.Var("w1", R.Tensor((16, 16, 3, 3), "float32"))
w2 = relax.Var("w2", R.Tensor((16, 32, 3, 3), "float32"))
w3 = relax.Var("w3", R.Tensor((16, 32, 3, 3), "float32"))
with bb.function("main", [x, w0, w1, w2, w3]):
with bb.dataflow():
lv0 = bb.emit_te(topi.nn.conv2d, x, w0, strides=1, padding=1, dilation=1)
lv1 = bb.emit_te(topi.nn.relu, lv0)
lv2 = bb.emit_te(topi.nn.conv2d, x, w1, strides=1, padding=1, dilation=1)
lv3 = bb.emit_te(topi.nn.relu, lv2)
lv4 = bb.emit_te(topi.concatenate, (lv1, lv3), axis=1)
lv5 = bb.emit_te(topi.nn.conv2d, lv4, w2, strides=1, padding=1, dilation=1)
lv6 = bb.emit_te(topi.nn.relu, lv5)
lv7 = bb.emit_te(topi.nn.conv2d, lv4, w3, strides=1, padding=1, dilation=1)
lv8 = bb.emit_te(topi.nn.relu, lv7)
gv = bb.emit_output(bb.call_te(topi.concatenate, (lv6, lv8), axis=1))
bb.emit_func_output(gv)
return bb.get()
def expected():
bb = relax.BlockBuilder()
# Grouped function 1
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
w = relax.Var("w", R.Tensor((16, 16, 3, 3), "float32"))
with bb.function("fused_conv2d_relu", [x, w], attrs={"Primitive": True}, private=True):
with bb.dataflow():
lv0 = bb.emit_te(
topi.nn.conv2d,
x,
w,
strides=1,
padding=1,
dilation=1,
primfunc_name_hint="conv2d",
)
gv = bb.emit_output(bb.call_te(topi.nn.relu, lv0))
bb.emit_func_output(gv)
# Grouped function 2
x = relax.Var("x", R.Tensor((1, 32, 64, 64), "float32"))
w = relax.Var("w", R.Tensor((16, 32, 3, 3), "float32"))
with bb.function("fused_conv2d1_relu", [x, w], attrs={"Primitive": True}, private=True):
with bb.dataflow():
lv0 = bb.emit_te(
topi.nn.conv2d,
x,
w,
strides=1,
padding=1,
dilation=1,
primfunc_name_hint="conv2d1",
)
gv = bb.emit_output(bb.call_te(topi.nn.relu, lv0))
bb.emit_func_output(gv)
# Get the global variables of the grouped functions
mod = bb.get()
fused_conv2d_relu1 = mod.get_global_var("fused_conv2d_relu")
fused_conv2d_relu2 = mod.get_global_var("fused_conv2d1_relu")
# Main function
x = relax.Var("x", R.Tensor((1, 16, 64, 64), "float32"))
w0 = relax.Var("w0", R.Tensor((16, 16, 3, 3), "float32"))
w1 = relax.Var("w1", R.Tensor((16, 16, 3, 3), "float32"))
w2 = relax.Var("w2", R.Tensor((16, 32, 3, 3), "float32"))
w3 = relax.Var("w3", R.Tensor((16, 32, 3, 3), "float32"))
with bb.function("main", [x, w0, w1, w2, w3]):
with bb.dataflow():
lv0 = bb.emit(relax.Call(fused_conv2d_relu1, (x, w0)))
lv1 = bb.emit(relax.Call(fused_conv2d_relu1, (x, w1)))
lv2 = bb.emit_te(topi.concatenate, (lv0, lv1), axis=1)
lv3 = bb.emit(relax.Call(fused_conv2d_relu2, (lv2, w2)))
lv4 = bb.emit(relax.Call(fused_conv2d_relu2, (lv2, w3)))
gv = bb.emit_output(bb.call_te(topi.concatenate, (lv3, lv4), axis=1))
bb.emit_func_output(gv)
return bb.get()
_check(before(), expected())
测试并行的单射算子融合#
该测试验证多个并行的单射算子(如add、squeeze、transpose)是否能被正确融合为复合算子。
def before():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((10, 20), "int32"))
with bb.function("main", [x]):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, relax.const(1, "int32"))
lv1 = bb.emit_te(topi.squeeze, lv0)
lv2 = bb.emit_te(topi.transpose, lv0, axes=[1, 0])
lv3 = bb.emit_te(topi.transpose, lv2, axes=[1, 0])
gv = bb.emit_output(bb.call_te(topi.left_shift, lv1, lv3))
bb.emit_func_output(gv)
return bb.get()
def expected():
bb = relax.BlockBuilder()
# Grouped function
x = relax.Var("x", R.Tensor((10, 20), "int32"))
p0 = relax.Var("p0", R.Tensor((), "int32"))
with bb.function(
"fused_add_squeeze_transpose_transpose1_left_shift",
[x, p0],
attrs={"Primitive": True},
private=True,
):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, p0)
lv1 = bb.emit_te(topi.squeeze, lv0)
lv2 = bb.emit_te(topi.transpose, lv0, axes=[1, 0])
lv3 = bb.emit_te(topi.transpose, lv2, axes=[1, 0], primfunc_name_hint="transpose1")
gv = bb.emit_output(bb.call_te(topi.left_shift, lv1, lv3))
bb.emit_func_output(gv)
# Get the global variables of the grouped functions
fused_func = bb.get().get_global_var("fused_add_squeeze_transpose_transpose1_left_shift")
# Main function
x = relax.Var("x", R.Tensor((10, 20), "int32"))
with bb.function("main", [x]):
with bb.dataflow():
gv = bb.emit_output(relax.Call(fused_func, (x, relax.const(1, "int32"))))
bb.emit_func_output(gv)
return bb.get()
_check(before(), expected())
测试softmax算子与后续算子的融合情况#
该测试验证 softmax 算子是否能与后续的 cast 算子融合,以优化执行效率。
def before():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor((16, 16), "float32"))
with bb.function("main", [x]):
with bb.dataflow():
lv0 = bb.emit_te(topi.nn.softmax, x)
gv = bb.emit_output(bb.call_te(topi.cast, lv0, dtype="float16"))
bb.emit_func_output(gv)
return bb.get()
def expected():
bb = relax.BlockBuilder()
# Grouped function
x = relax.Var("x", R.Tensor((16, 16), "float32"))
with bb.function("fused_softmax_cast", [x], attrs={"Primitive": True}, private=True):
with bb.dataflow():
lv0 = bb.emit_te(topi.nn.softmax, x)
gv = bb.emit_output(bb.call_te(topi.cast, lv0, dtype="float16"))
bb.emit_func_output(gv)
# Get the global variables of the grouped functions
fused_func = bb.get().get_global_var("fused_softmax_cast")
# Main function
x = relax.Var("x", R.Tensor((16, 16), "float32"))
with bb.function("main", [x]):
with bb.dataflow():
gv = bb.emit_output(relax.Call(fused_func, (x,)))
bb.emit_func_output(gv)
return bb.get()
_check(before(), expected())
测试多个 Relax 函数的算子融合#
该测试验证在包含多个独立函数的模块中,每个函数内的算子是否能被正确融合。
def before():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor([10, 20], "float32"))
with bb.function("func1", [x]):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv1 = bb.emit_te(topi.exp, lv0)
gv = bb.emit_output(bb.call_te(topi.squeeze, lv1))
bb.emit_func_output(gv)
x = relax.Var("x", R.Tensor([20, 10], "float32"))
with bb.function("func2", [x]):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, relax.const(1, "float32"))
lv1 = bb.emit_te(topi.exp, lv0)
gv = bb.emit_output(bb.call_te(topi.squeeze, lv1))
bb.emit_func_output(gv)
return bb.get()
def expected():
bb = relax.BlockBuilder()
x = relax.Var("x", R.Tensor([10, 20], "float32"))
p0 = relax.Var("p0", R.Tensor((), "float32"))
with bb.function("fused_add_exp_squeeze", [x, p0], attrs={"Primitive": True}, private=True):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, p0)
lv1 = bb.emit_te(topi.exp, lv0)
gv = bb.emit_output(bb.call_te(topi.squeeze, lv1))
bb.emit_func_output(gv)
fused_add_exp_squeeze = bb.get().get_global_var("fused_add_exp_squeeze")
x = relax.Var("x", R.Tensor([20, 10], "float32"))
p0 = relax.Var("p0", R.Tensor((), "float32"))
with bb.function(
"fused_add1_exp1_squeeze1", [x, p0], attrs={"Primitive": True}, private=True
):
with bb.dataflow():
lv0 = bb.emit_te(topi.add, x, p0)
lv1 = bb.emit_te(topi.exp, lv0)
gv = bb.emit_output(bb.call_te(topi.squeeze, lv1))
bb.emit_func_output(gv)
fused_add1_exp1_squeeze1 = bb.get().get_global_var("fused_add1_exp1_squeeze1")
x = relax.Var("x", R.Tensor([10, 20], "float32"))
with bb.function("func1", [x]):
with bb.dataflow():
gv = bb.emit_output(
relax.Call(fused_add_exp_squeeze, [x, relax.const(1, "float32")])
)
bb.emit_func_output(gv)
x = relax.Var("x", R.Tensor([20, 10], "float32"))
with bb.function("func2", [x]):
with bb.dataflow():
gv = bb.emit_output(
relax.Call(fused_add1_exp1_squeeze1, [x, relax.const(1, "float32")])
)
bb.emit_func_output(gv)
return bb.get()
_check(before(), expected())
测试包含 call_dps_packed 调用的算子融合#
该测试验证当函数中包含 call_dps_packed 调用时,FuseOps 变换是否会跳过这些调用,保持原始结构。
@I.ir_module
class Module:
@R.function
def main(x: R.Tensor((2, 3), "float32")):
with R.dataflow():
y = R.call_dps_packed("func_packed_dps", x, R.Tensor((2, 3), "float32"))
R.output(y)
return y
# FuseOps should does no change to it.
_check(Module, Module)
测试 call_dps_packed 调用边缘的算子融合#
该测试验证当 call_dps_packed 调用位于算子链边缘时,其他可融合的算子是否能被正确融合。
@I.ir_module
class Module:
@R.function
def main(x: R.Tensor((2, 3), "float32")):
cls = Module
with R.dataflow():
# 调用exp原语函数处理输入x
a = R.call_tir(cls.exp, (x,), out_sinfo=R.Tensor((2, 3), "float32"))
# 再次调用exp原语函数处理中间结果a
b = R.call_tir(cls.exp, (a,), out_sinfo=R.Tensor((2, 3), "float32"))
# 调用打包的dps函数处理中间结果a
c = R.call_dps_packed("packed_dps", (a,), out_sinfo=R.Tensor((2, 3), "float32"))
R.output(b, c)
return R.tuple(b, c)
@T.prim_func(private=True)
def exp(A: T.Buffer((2, 3), "float32"), B: T.Buffer((2, 3), "float32")):
"""
原语函数:占位符函数,仅用于测试
参数:
A: 输入缓冲区,形状为(2, 3),数据类型为float32
B: 输出缓冲区,形状为(2, 3),数据类型为float32
"""
T.evaluate(0) # 空操作,仅作为占位符
# 预期算子融合不会对此模块产生变化,因此将模块与自身比较
_check(Module, Module)
测试 LayerNorm 和 SiLU 激活函数的融合#
该测试验证 LayerNorm 算子和 ReLU 激活函数是否能被正确融合,以减少内存传输和计算开销。
@I.ir_module
class Module:
@R.function
def main(x: R.Tensor((1, 512, 64, 64), "float32"), mean: R.Tensor((64, 64), "float32"), var: R.Tensor((64, 64), "float32")):
cls = Module
with R.dataflow():
gv0 = R.call_tir(cls.layer_norm, (x, mean, var), out_sinfo=R.Tensor((1, 512, 64, 64), 'float32'))
gv1 = R.call_tir(cls.relu, gv0, out_sinfo=R.Tensor((1, 512, 64, 64), "float32"))
R.output(gv1)
return gv1
@T.prim_func(private=True)
def layer_norm(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), gamma: T.Buffer((T.int64(64), T.int64(64)), "float32"), beta: T.Buffer((T.int64(64), T.int64(64)), "float32"), T_layer_norm: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32")):
rxplaceholder_red_temp_v0 = T.alloc_buffer([T.int64(64), T.int64(64)], dtype="float32")
rxplaceholder_red_temp_v1 = T.alloc_buffer([T.int64(64), T.int64(64)], dtype="float32")
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
with T.block("rxplaceholder_red_temp"):
ax0, ax1, k2, k3 = T.axis.remap("SSRR", [i0, i1, i2, i3])
T.reads(A[ax0, ax1, k2, k3])
T.writes(rxplaceholder_red_temp_v0[ax0, ax1], rxplaceholder_red_temp_v1[ax0, ax1])
with T.init():
rxplaceholder_red_temp_v0[ax0, ax1] = T.float32(0)
rxplaceholder_red_temp_v1[ax0, ax1] = T.float32(0)
v_rxplaceholder_red_temp_v0: T.float32 = rxplaceholder_red_temp_v0[ax0, ax1] + A[ax0, ax1, k2, k3]
v_rxplaceholder_red_temp_v1: T.float32 = rxplaceholder_red_temp_v1[ax0, ax1] + A[ax0, ax1, k2, k3] * A[ax0, ax1, k2, k3]
rxplaceholder_red_temp_v0[ax0, ax1] = v_rxplaceholder_red_temp_v0
rxplaceholder_red_temp_v1[ax0, ax1] = v_rxplaceholder_red_temp_v1
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
with T.block("T_layer_norm"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(A[ax0, ax1, ax2, ax3], rxplaceholder_red_temp_v0[ax0, ax1], rxplaceholder_red_temp_v1[ax0, ax1], gamma[ax2, ax3], beta[ax2, ax3])
T.writes(T_layer_norm[ax0, ax1, ax2, ax3])
T_layer_norm[ax0, ax1, ax2, ax3] = (A[ax0, ax1, ax2, ax3] - rxplaceholder_red_temp_v0[ax0, ax1] * T.float32(0.05)) * T.rsqrt(rxplaceholder_red_temp_v1[ax0, ax1] * T.float32(0.05) - rxplaceholder_red_temp_v0[ax0, ax1] * T.float32(0.05) * (rxplaceholder_red_temp_v0[ax0, ax1] * T.float32(0.05)) + T.float32(1e-05), dtype="float32") * gamma[ax2, ax3] + beta[ax2, ax3]
@T.prim_func(private=True)
def relu(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), B: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32")):
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
with T.block("relu"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(A[v_i0, v_i1, v_i2, v_i3])
T.writes(B[v_i0, v_i1, v_i2, v_i3])
B[v_i0, v_i1, v_i2, v_i3] = T.max(A[v_i0, v_i1, v_i2, v_i3], T.float32(0))
@I.ir_module
class Expected:
@T.prim_func(private=True)
def layer_norm(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), gamma: T.Buffer((T.int64(64), T.int64(64)), "float32"), beta: T.Buffer((T.int64(64), T.int64(64)), "float32"), T_layer_norm: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32")):
T.func_attr({"op_pattern": 4})
# with T.block("root"):
rxplaceholder_red_temp_v0 = T.alloc_buffer((T.int64(64), T.int64(64)))
rxplaceholder_red_temp_v1 = T.alloc_buffer((T.int64(64), T.int64(64)))
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
with T.block("rxplaceholder_red_temp"):
ax0, ax1, k2, k3 = T.axis.remap("SSRR", [i0, i1, i2, i3])
T.reads(A[ax0, ax1, k2, k3])
T.writes(rxplaceholder_red_temp_v0[ax0, ax1], rxplaceholder_red_temp_v1[ax0, ax1])
with T.init():
rxplaceholder_red_temp_v0[ax0, ax1] = T.float32(0)
rxplaceholder_red_temp_v1[ax0, ax1] = T.float32(0)
v_rxplaceholder_red_temp_v0: T.float32 = rxplaceholder_red_temp_v0[ax0, ax1] + A[ax0, ax1, k2, k3]
v_rxplaceholder_red_temp_v1: T.float32 = rxplaceholder_red_temp_v1[ax0, ax1] + A[ax0, ax1, k2, k3] * A[ax0, ax1, k2, k3]
rxplaceholder_red_temp_v0[ax0, ax1] = v_rxplaceholder_red_temp_v0
rxplaceholder_red_temp_v1[ax0, ax1] = v_rxplaceholder_red_temp_v1
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
with T.block("T_layer_norm"):
ax0, ax1, ax2, ax3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(A[ax0, ax1, ax2, ax3], rxplaceholder_red_temp_v0[ax0, ax1], rxplaceholder_red_temp_v1[ax0, ax1], gamma[ax2, ax3], beta[ax2, ax3])
T.writes(T_layer_norm[ax0, ax1, ax2, ax3])
T_layer_norm[ax0, ax1, ax2, ax3] = (A[ax0, ax1, ax2, ax3] - rxplaceholder_red_temp_v0[ax0, ax1] * T.float32(0.050000000000000003)) * T.rsqrt(rxplaceholder_red_temp_v1[ax0, ax1] * T.float32(0.050000000000000003) - rxplaceholder_red_temp_v0[ax0, ax1] * T.float32(0.050000000000000003) * (rxplaceholder_red_temp_v0[ax0, ax1] * T.float32(0.050000000000000003)) + T.float32(1.0000000000000001e-05)) * gamma[ax2, ax3] + beta[ax2, ax3]
@T.prim_func(private=True)
def relu(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), B: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32")):
T.func_attr({"op_pattern": 0})
# with T.block("root"):
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
with T.block("relu"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(A[v_i0, v_i1, v_i2, v_i3])
T.writes(B[v_i0, v_i1, v_i2, v_i3])
B[v_i0, v_i1, v_i2, v_i3] = T.max(A[v_i0, v_i1, v_i2, v_i3], T.float32(0))
@R.function(private=True)
def fused_layer_norm_relu(x: R.Tensor((1, 512, 64, 64), dtype="float32"), mean: R.Tensor((64, 64), dtype="float32"), var: R.Tensor((64, 64), dtype="float32")) -> R.Tensor((1, 512, 64, 64), dtype="float32"):
R.func_attr({"Primitive": True})
cls = Expected
with R.dataflow():
gv0 = R.call_tir(cls.layer_norm, (x, mean, var), out_sinfo=R.Tensor((1, 512, 64, 64), 'float32'))
gv = R.call_tir(cls.relu, (gv0,), out_sinfo=R.Tensor((1, 512, 64, 64), dtype="float32"))
R.output(gv)
return gv
@R.function
def main(x: R.Tensor((1, 512, 64, 64), dtype="float32"), mean: R.Tensor((64, 64), dtype="float32"), var: R.Tensor((64, 64), dtype="float32")) -> R.Tensor((1, 512, 64, 64), dtype="float32"):
cls = Expected
with R.dataflow():
gv: R.Tensor((1, 512, 64, 64), dtype="float32") = cls.fused_layer_norm_relu(x, mean, var)
R.output(gv)
return gv
# fmt: on
_check(Module, Expected)
测试多路径网络结构的算子融合#
该测试验证具有多条计算路径的网络中,各路径上的算子是否能被正确融合,特别是卷积、矩阵乘法和加法等算子的融合。
@I.ir_module
class Module:
@R.function
def main(
inp_0: R.Tensor((2, 320, 64, 64), dtype="float32"),
inp_1: R.Tensor((2, 1280), dtype="float32"),
w1: R.Tensor((320, 320, 3, 3), dtype="float32"),
b1: R.Tensor((320,), "float32"),
w2: R.Tensor((320, 1280), "float32"),
b2: R.Tensor((320,), "float32"),
):
R.func_attr({"num_input": 2})
with R.dataflow():
lv27: R.Tensor((2, 320, 64, 64), dtype="float32") = R.nn.conv2d(inp_0, w1, strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="float32")
lv28: R.Tensor((1, 320, 1, 1), dtype="float32") = R.reshape(b1, R.shape([1, 320, 1, 1])) ##
lv29: R.Tensor((2, 320, 64, 64), dtype="float32") = R.add(lv27, lv28)
lv31: R.Tensor((1280, 320), dtype="float32") = R.permute_dims(w2, axes=None) ##
lv32: R.Tensor((2, 320), dtype="float32") = R.matmul(inp_1, lv31, out_dtype="float32")
lv33: R.Tensor((2, 320), dtype="float32") = R.add(lv32, b2)
lv35: R.Tensor((2, 320, 1, 1), dtype="float32") = R.reshape(lv33, R.shape([2, 320, 1, 1]))
lv36: R.Tensor((2, 320, 64, 64), dtype="float32") = R.add(lv29, lv35)
gv = lv36
R.output(gv)
return gv
@I.ir_module
class Expected:
@T.prim_func(private=True)
def add(rxplaceholder: T.Buffer((T.int64(2), T.int64(320), T.int64(64), T.int64(64)), "float32"), rxplaceholder_1: T.Buffer((T.int64(1), T.int64(320), T.int64(1), T.int64(1)), "float32"), T_add: T.Buffer((T.int64(2), T.int64(320), T.int64(64), T.int64(64)), "float32")):
T.func_attr({"op_pattern": 0, "tir.noalias": True})
for ax0, ax1, ax2, ax3 in T.grid(T.int64(2), T.int64(320), T.int64(64), T.int64(64)):
with T.block("T_add"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(rxplaceholder[v_ax0, v_ax1, v_ax2, v_ax3], rxplaceholder_1[T.int64(0), v_ax1, T.int64(0), T.int64(0)])
T.writes(T_add[v_ax0, v_ax1, v_ax2, v_ax3])
T_add[v_ax0, v_ax1, v_ax2, v_ax3] = rxplaceholder[v_ax0, v_ax1, v_ax2, v_ax3] + rxplaceholder_1[T.int64(0), v_ax1, T.int64(0), T.int64(0)]
@T.prim_func(private=True)
def add1(rxplaceholder: T.Buffer((T.int64(2), T.int64(320)), "float32"), rxplaceholder_1: T.Buffer((T.int64(320),), "float32"), T_add: T.Buffer((T.int64(2), T.int64(320)), "float32")):
T.func_attr({"op_pattern": 0, "tir.noalias": True})
for ax0, ax1 in T.grid(T.int64(2), T.int64(320)):
with T.block("T_add"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(rxplaceholder[v_ax0, v_ax1], rxplaceholder_1[v_ax1])
T.writes(T_add[v_ax0, v_ax1])
T_add[v_ax0, v_ax1] = rxplaceholder[v_ax0, v_ax1] + rxplaceholder_1[v_ax1]
@T.prim_func(private=True)
def add2(rxplaceholder: T.Buffer((T.int64(2), T.int64(320), T.int64(64), T.int64(64)), "float32"), rxplaceholder_1: T.Buffer((T.int64(2), T.int64(320), T.int64(1), T.int64(1)), "float32"), T_add: T.Buffer((T.int64(2), T.int64(320), T.int64(64), T.int64(64)), "float32")):
T.func_attr({"op_pattern": 0, "tir.noalias": True})
for ax0, ax1, ax2, ax3 in T.grid(T.int64(2), T.int64(320), T.int64(64), T.int64(64)):
with T.block("T_add"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(rxplaceholder[v_ax0, v_ax1, v_ax2, v_ax3], rxplaceholder_1[v_ax0, v_ax1, T.int64(0), T.int64(0)])
T.writes(T_add[v_ax0, v_ax1, v_ax2, v_ax3])
T_add[v_ax0, v_ax1, v_ax2, v_ax3] = rxplaceholder[v_ax0, v_ax1, v_ax2, v_ax3] + rxplaceholder_1[v_ax0, v_ax1, T.int64(0), T.int64(0)]
@T.prim_func(private=True)
def conv2d(rxplaceholder: T.Buffer((T.int64(2), T.int64(320), T.int64(64), T.int64(64)), "float32"), rxplaceholder_1: T.Buffer((T.int64(320), T.int64(320), T.int64(3), T.int64(3)), "float32"), conv2d_nchw: T.Buffer((T.int64(2), T.int64(320), T.int64(64), T.int64(64)), "float32")):
T.func_attr({"op_pattern": 4, "tir.noalias": True})
pad_temp = T.alloc_buffer((T.int64(2), T.int64(320), T.int64(66), T.int64(66)))
for i0, i1, i2, i3 in T.grid(T.int64(2), T.int64(320), T.int64(66), T.int64(66)):
with T.block("pad_temp"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(rxplaceholder[v_i0, v_i1, v_i2 - T.int64(1), v_i3 - T.int64(1)])
T.writes(pad_temp[v_i0, v_i1, v_i2, v_i3])
pad_temp[v_i0, v_i1, v_i2, v_i3] = T.if_then_else(T.int64(1) <= v_i2 and v_i2 < T.int64(65) and T.int64(1) <= v_i3 and v_i3 < T.int64(65), rxplaceholder[v_i0, v_i1, v_i2 - T.int64(1), v_i3 - T.int64(1)], T.float32(0))
for nn, ff, yy, xx, rc, ry, rx in T.grid(T.int64(2), T.int64(320), T.int64(64), T.int64(64), T.int64(320), T.int64(3), T.int64(3)):
with T.block("conv2d_nchw"):
v_nn, v_ff, v_yy, v_xx, v_rc, v_ry, v_rx = T.axis.remap("SSSSRRR", [nn, ff, yy, xx, rc, ry, rx])
T.reads(pad_temp[v_nn, v_rc, v_yy + v_ry, v_xx + v_rx], rxplaceholder_1[v_ff, v_rc, v_ry, v_rx])
T.writes(conv2d_nchw[v_nn, v_ff, v_yy, v_xx])
with T.init():
conv2d_nchw[v_nn, v_ff, v_yy, v_xx] = T.float32(0)
conv2d_nchw[v_nn, v_ff, v_yy, v_xx] = conv2d_nchw[v_nn, v_ff, v_yy, v_xx] + pad_temp[v_nn, v_rc, v_yy + v_ry, v_xx + v_rx] * rxplaceholder_1[v_ff, v_rc, v_ry, v_rx]
@T.prim_func(private=True)
def matmul(rxplaceholder: T.Buffer((T.int64(2), T.int64(1280)), "float32"), rxplaceholder_1: T.Buffer((T.int64(1280), T.int64(320)), "float32"), matmul: T.Buffer((T.int64(2), T.int64(320)), "float32")):
T.func_attr({"op_pattern": 4, "tir.noalias": True})
for i0, i1, k in T.grid(T.int64(2), T.int64(320), T.int64(1280)):
with T.block("matmul"):
v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k])
T.reads(rxplaceholder[v_i0, v_k], rxplaceholder_1[v_k, v_i1])
T.writes(matmul[v_i0, v_i1])
with T.init():
matmul[v_i0, v_i1] = T.float32(0)
matmul[v_i0, v_i1] = matmul[v_i0, v_i1] + rxplaceholder[v_i0, v_k] * rxplaceholder_1[v_k, v_i1]
@T.prim_func(private=True)
def reshape(rxplaceholder: T.Buffer((T.int64(320),), "float32"), T_reshape: T.Buffer((T.int64(1), T.int64(320), T.int64(1), T.int64(1)), "float32")):
T.func_attr({"op_pattern": 2, "tir.noalias": True})
for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(320), T.int64(1), T.int64(1)):
with T.block("T_reshape"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(rxplaceholder[(v_ax1 + v_ax2 + v_ax3) % T.int64(320)])
T.writes(T_reshape[v_ax0, v_ax1, v_ax2, v_ax3])
T_reshape[v_ax0, v_ax1, v_ax2, v_ax3] = rxplaceholder[(v_ax1 + v_ax2 + v_ax3) % T.int64(320)]
@T.prim_func(private=True)
def reshape1(rxplaceholder: T.Buffer((T.int64(2), T.int64(320)), "float32"), T_reshape: T.Buffer((T.int64(2), T.int64(320), T.int64(1), T.int64(1)), "float32")):
T.func_attr({"op_pattern": 2, "tir.noalias": True})
for ax0, ax1, ax2, ax3 in T.grid(T.int64(2), T.int64(320), T.int64(1), T.int64(1)):
with T.block("T_reshape"):
v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
T.reads(rxplaceholder[((v_ax1 + v_ax2 + v_ax3) // T.int64(320) + v_ax0) % T.int64(2), (v_ax1 + v_ax2 + v_ax3) % T.int64(320)])
T.writes(T_reshape[v_ax0, v_ax1, v_ax2, v_ax3])
T_reshape[v_ax0, v_ax1, v_ax2, v_ax3] = rxplaceholder[((v_ax1 + v_ax2 + v_ax3) // T.int64(320) + v_ax0) % T.int64(2), (v_ax1 + v_ax2 + v_ax3) % T.int64(320)]
@T.prim_func(private=True)
def transpose(rxplaceholder: T.Buffer((T.int64(320), T.int64(1280)), "float32"), T_transpose: T.Buffer((T.int64(1280), T.int64(320)), "float32")):
T.func_attr({"op_pattern": 2, "tir.noalias": True})
for ax0, ax1 in T.grid(T.int64(1280), T.int64(320)):
with T.block("T_transpose"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(rxplaceholder[v_ax1, v_ax0])
T.writes(T_transpose[v_ax0, v_ax1])
T_transpose[v_ax0, v_ax1] = rxplaceholder[v_ax1, v_ax0]
@R.function(private=True)
def fused_conv2d_add_add2(inp_0: R.Tensor((2, 320, 64, 64), dtype="float32"), w1: R.Tensor((320, 320, 3, 3), dtype="float32"), lv28: R.Tensor((1, 320, 1, 1), dtype="float32"), lv35: R.Tensor((2, 320, 1, 1), dtype="float32")) -> R.Tensor((2, 320, 64, 64), dtype="float32"):
R.func_attr({"Primitive": True})
cls = Expected
with R.dataflow():
lv27 = R.call_tir(cls.conv2d, (inp_0, w1), out_sinfo=R.Tensor((2, 320, 64, 64), dtype="float32"))
lv29 = R.call_tir(cls.add, (lv27, lv28), out_sinfo=R.Tensor((2, 320, 64, 64), dtype="float32"))
gv = R.call_tir(cls.add2, (lv29, lv35), out_sinfo=R.Tensor((2, 320, 64, 64), dtype="float32"))
R.output(gv)
return gv
@R.function(private=True)
def fused_matmul_add1(inp_1: R.Tensor((2, 1280), dtype="float32"), lv31: R.Tensor((1280, 320), dtype="float32"), b2: R.Tensor((320,), dtype="float32")) -> R.Tensor((2, 320), dtype="float32"):
cls = Expected
R.func_attr({"Primitive": True})
with R.dataflow():
lv32 = R.call_tir(cls.matmul, (inp_1, lv31), out_sinfo=R.Tensor((2, 320), dtype="float32"))
gv = R.call_tir(cls.add1, (lv32, b2), out_sinfo=R.Tensor((2, 320), dtype="float32"))
R.output(gv)
return gv
@R.function
def main(inp_0: R.Tensor((2, 320, 64, 64), dtype="float32"), inp_1: R.Tensor((2, 1280), dtype="float32"), w1: R.Tensor((320, 320, 3, 3), dtype="float32"), b1: R.Tensor((320,), dtype="float32"), w2: R.Tensor((320, 1280), dtype="float32"), b2: R.Tensor((320,), dtype="float32")) -> R.Tensor((2, 320, 64, 64), dtype="float32"):
R.func_attr({"num_input": 2})
cls = Expected
with R.dataflow():
lv28 = R.call_tir(cls.reshape, (b1,), out_sinfo=R.Tensor((1, 320, 1, 1), dtype="float32"))
lv31 = R.call_tir(cls.transpose, (w2,), out_sinfo=R.Tensor((1280, 320), dtype="float32"))
lv: R.Tensor((2, 320), dtype="float32") = cls.fused_matmul_add1(inp_1, lv31, b2)
lv35 = R.call_tir(cls.reshape1, (lv,), out_sinfo=R.Tensor((2, 320, 1, 1), dtype="float32"))
lv1: R.Tensor((2, 320, 64, 64), dtype="float32") = cls.fused_conv2d_add_add2(inp_0, w1, lv28, lv35)
gv: R.Tensor((2, 320, 64, 64), dtype="float32") = lv1
R.output(gv)
return gv
# fmt: on
mod = relax.transform.LegalizeOps()(Module)
mod = relax.transform.AnnotateTIROpPattern()(mod)
mod = relax.transform.FuseOps()(mod)
tvm.ir.assert_structural_equal(mod, Expected)
测试包含无效组的算子融合#
该测试验证当网络中存在未被使用的计算路径(无效组)时,FuseOps转换是否能正确处理这种情况,只融合有效的计算路径。
@I.ir_module
class Module:
@R.function
def main(inp_0: R.Tensor((1, 784), dtype="float32"), inp_1: R.Tensor((1, 128), dtype="float32"), linear1_bias: R.Tensor((128,), dtype="float32"), linear1_weight: R.Tensor((128, 784), dtype="float32"), linear2_bias: R.Tensor((10,), dtype="float32"), linear2_weight: R.Tensor((10, 128), dtype="float32")) -> R.Tensor((1, 10), dtype="float32"):
R.func_attr({"num_input": 1})
with R.dataflow():
lv: R.Tensor((784, 128), dtype="float32") = R.permute_dims(linear1_weight, axes=None)
lv1: R.Tensor((1, 128), dtype="float32") = R.matmul(inp_0, lv, out_dtype="float32")
lv2: R.Tensor((1, 128), dtype="float32") = R.add(lv1, linear1_bias)
lv3: R.Tensor((1, 128), dtype="float32") = R.nn.relu(lv2)
lv4: R.Tensor((128, 10), dtype="float32") = R.permute_dims(linear2_weight, axes=None)
lv5: R.Tensor((1, 10), dtype="float32") = R.matmul(inp_1, lv4, out_dtype="float32")
lv6: R.Tensor((1, 10), dtype="float32") = R.add(lv5, linear2_bias)
gv: R.Tensor((1, 10), dtype="float32") = lv6
R.output(gv)
return gv
@I.ir_module
class Expected:
@T.prim_func(private=True)
def add(rxplaceholder: T.Buffer((T.int64(1), T.int64(128)), "float32"), rxplaceholder_1: T.Buffer((T.int64(128),), "float32"), T_add: T.Buffer((T.int64(1), T.int64(128)), "float32")):
T.func_attr({"op_pattern": 0, "tir.noalias": True})
# with T.block("root"):
for ax0, ax1 in T.grid(T.int64(1), T.int64(128)):
with T.block("T_add"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(rxplaceholder[v_ax0, v_ax1], rxplaceholder_1[v_ax1])
T.writes(T_add[v_ax0, v_ax1])
T_add[v_ax0, v_ax1] = rxplaceholder[v_ax0, v_ax1] + rxplaceholder_1[v_ax1]
@T.prim_func(private=True)
def add1(rxplaceholder: T.Buffer((T.int64(1), T.int64(10)), "float32"), rxplaceholder_1: T.Buffer((T.int64(10),), "float32"), T_add: T.Buffer((T.int64(1), T.int64(10)), "float32")):
T.func_attr({"op_pattern": 0, "tir.noalias": True})
# with T.block("root"):
for ax0, ax1 in T.grid(T.int64(1), T.int64(10)):
with T.block("T_add"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(rxplaceholder[v_ax0, v_ax1], rxplaceholder_1[v_ax1])
T.writes(T_add[v_ax0, v_ax1])
T_add[v_ax0, v_ax1] = rxplaceholder[v_ax0, v_ax1] + rxplaceholder_1[v_ax1]
@T.prim_func(private=True)
def matmul(rxplaceholder: T.Buffer((T.int64(1), T.int64(784)), "float32"), rxplaceholder_1: T.Buffer((T.int64(784), T.int64(128)), "float32"), matmul_1: T.Buffer((T.int64(1), T.int64(128)), "float32")):
T.func_attr({"op_pattern": 4, "tir.noalias": True})
# with T.block("root"):
for i0, i1, k in T.grid(T.int64(1), T.int64(128), T.int64(784)):
with T.block("matmul"):
v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k])
T.reads(rxplaceholder[v_i0, v_k], rxplaceholder_1[v_k, v_i1])
T.writes(matmul_1[v_i0, v_i1])
with T.init():
matmul_1[v_i0, v_i1] = T.float32(0)
matmul_1[v_i0, v_i1] = matmul_1[v_i0, v_i1] + rxplaceholder[v_i0, v_k] * rxplaceholder_1[v_k, v_i1]
@T.prim_func(private=True)
def matmul1(rxplaceholder: T.Buffer((T.int64(1), T.int64(128)), "float32"), rxplaceholder_1: T.Buffer((T.int64(128), T.int64(10)), "float32"), matmul: T.Buffer((T.int64(1), T.int64(10)), "float32")):
T.func_attr({"op_pattern": 4, "tir.noalias": True})
# with T.block("root"):
for i0, i1, k in T.grid(T.int64(1), T.int64(10), T.int64(128)):
with T.block("matmul"):
v_i0, v_i1, v_k = T.axis.remap("SSR", [i0, i1, k])
T.reads(rxplaceholder[v_i0, v_k], rxplaceholder_1[v_k, v_i1])
T.writes(matmul[v_i0, v_i1])
with T.init():
matmul[v_i0, v_i1] = T.float32(0)
matmul[v_i0, v_i1] = matmul[v_i0, v_i1] + rxplaceholder[v_i0, v_k] * rxplaceholder_1[v_k, v_i1]
@T.prim_func(private=True)
def relu(rxplaceholder: T.Buffer((T.int64(1), T.int64(128)), "float32"), compute: T.Buffer((T.int64(1), T.int64(128)), "float32")):
T.func_attr({"op_pattern": 0, "tir.noalias": True})
# with T.block("root"):
for i0, i1 in T.grid(T.int64(1), T.int64(128)):
with T.block("compute"):
v_i0, v_i1 = T.axis.remap("SS", [i0, i1])
T.reads(rxplaceholder[v_i0, v_i1])
T.writes(compute[v_i0, v_i1])
compute[v_i0, v_i1] = T.max(rxplaceholder[v_i0, v_i1], T.float32(0))
@T.prim_func(private=True)
def transpose(rxplaceholder: T.Buffer((T.int64(128), T.int64(784)), "float32"), T_transpose: T.Buffer((T.int64(784), T.int64(128)), "float32")):
T.func_attr({"op_pattern": 2, "tir.noalias": True})
# with T.block("root"):
for ax0, ax1 in T.grid(T.int64(784), T.int64(128)):
with T.block("T_transpose"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(rxplaceholder[v_ax1, v_ax0])
T.writes(T_transpose[v_ax0, v_ax1])
T_transpose[v_ax0, v_ax1] = rxplaceholder[v_ax1, v_ax0]
@T.prim_func(private=True)
def transpose1(rxplaceholder: T.Buffer((T.int64(10), T.int64(128)), "float32"), T_transpose: T.Buffer((T.int64(128), T.int64(10)), "float32")):
T.func_attr({"op_pattern": 2, "tir.noalias": True})
# with T.block("root"):
for ax0, ax1 in T.grid(T.int64(128), T.int64(10)):
with T.block("T_transpose"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(rxplaceholder[v_ax1, v_ax0])
T.writes(T_transpose[v_ax0, v_ax1])
T_transpose[v_ax0, v_ax1] = rxplaceholder[v_ax1, v_ax0]
@R.function(private=True)
def fused_matmul1_add1(inp_1: R.Tensor((1, 128), dtype="float32"), lv4: R.Tensor((128, 10), dtype="float32"), linear2_bias: R.Tensor((10,), dtype="float32")) -> R.Tensor((1, 10), dtype="float32"):
R.func_attr({"Primitive": True})
cls = Expected
with R.dataflow():
lv5 = R.call_tir(cls.matmul1, (inp_1, lv4), out_sinfo=R.Tensor((1, 10), dtype="float32"))
gv = R.call_tir(cls.add1, (lv5, linear2_bias), out_sinfo=R.Tensor((1, 10), dtype="float32"))
R.output(gv)
return gv
@R.function
def main(inp_0: R.Tensor((1, 784), dtype="float32"), inp_1: R.Tensor((1, 128), dtype="float32"), linear1_bias: R.Tensor((128,), dtype="float32"), linear1_weight: R.Tensor((128, 784), dtype="float32"), linear2_bias: R.Tensor((10,), dtype="float32"), linear2_weight: R.Tensor((10, 128), dtype="float32")) -> R.Tensor((1, 10), dtype="float32"):
R.func_attr({"num_input": 1})
cls = Expected
with R.dataflow():
lv = R.call_tir(cls.transpose, (linear1_weight,), out_sinfo=R.Tensor((784, 128), dtype="float32"))
lv4 = R.call_tir(cls.transpose1, (linear2_weight,), out_sinfo=R.Tensor((128, 10), dtype="float32"))
lv_1: R.Tensor((1, 10), dtype="float32") = cls.fused_matmul1_add1(inp_1, lv4, linear2_bias)
gv: R.Tensor((1, 10), dtype="float32") = lv_1
R.output(gv)
return gv
# fmt: on
mod = relax.transform.LegalizeOps()(Module)
_check(mod, Expected)
[11:32:09] /media/pc/data/lxw/ai/tvm/src/relax/transform/fuse_ops.cc:551: Warning: There are dead codes in the current IRModule, please run the DeadCodeElimination Pass before FuseOps
测试符号形状感知的算子融合#
该测试验证当张量形状包含符号变量时,算子融合是否能正确处理这些符号形状。
@I.ir_module
class Before:
@R.function
def main(x: R.Tensor(["n", "m"], "float32")):
with R.dataflow():
lv0 = R.emit_te(topi.add, x, R.const(1, "float32"))
lv1 = R.emit_te(topi.exp, lv0)
gv = R.emit_te(topi.squeeze, lv1)
R.output(gv)
return gv
@I.ir_module
class Expected:
@R.function(private=True)
def fused_add_exp_squeeze(
x: R.Tensor(["n", "m"], "float32"), p0: R.Tensor([], "float32")
) -> R.Tensor(["n", "m"], dtype="float32"):
R.func_attr({"Primitive": True})
with R.dataflow():
lv0 = R.emit_te(topi.add, x, p0)
lv1 = R.emit_te(topi.exp, lv0)
gv = R.emit_te(topi.squeeze, lv1)
R.output(gv)
return gv
@R.function
def main(x: R.Tensor(["n", "m"], "float32")) -> R.Tensor(["n", "m"], dtype="float32"):
cls = Expected
with R.dataflow():
gv = cls.fused_add_exp_squeeze(x, R.const(1, "float32"))
R.output(gv)
return gv
_check(Before, Expected)
该测试进一步验证包含更复杂符号形状表达式的算子融合情况,包括 full、trilu 和 broadcast_to 等算子的融合。
@I.ir_module
class Before:
@R.function
def main(s: R.Shape(["n"])):
n = T.int64()
with R.dataflow():
lv0 = R.emit_te(topi.full, [n, n], "float32", 0)
lv1 = R.emit_te(topi.trilu, lv0, tvm.tir.const(1, "int32"), upper=True)
gv = R.emit_te(topi.broadcast_to, lv1, [1, 1, n, n])
R.output(gv)
return gv
@I.ir_module
class Expected:
@R.function(private=True)
def fused_full_trilu_broadcast_to(
s: R.Shape(["n"]),
) -> R.Tensor([1, 1, "n", "n"], "float32"):
R.func_attr({"Primitive": True})
n = T.int64()
with R.dataflow():
lv0 = R.emit_te(topi.full, [n, n], "float32", 0)
lv1 = R.emit_te(topi.trilu, lv0, tvm.tir.const(1, "int32"), upper=True)
gv = R.emit_te(topi.broadcast_to, lv1, [1, 1, n, n])
R.output(gv)
return gv
@R.function
def main(s: R.Shape(["n"])) -> R.Tensor((1, 1, "n", "n"), dtype="float32"):
cls = Expected
n = T.int64()
with R.dataflow():
gv: R.Tensor([1, 1, n, n], "float32") = cls.fused_full_trilu_broadcast_to(
R.shape([n])
)
R.output(gv)
return gv
_check(Before, Expected)
测试形状表达式参数的算子融合#
该测试验证当函数参数包含形状表达式时,算子融合是否能正确处理这种情况。
@I.ir_module
class Before:
@R.function
def main(s: R.Shape(["n"]), kv_cache: R.Object):
n = T.int64()
with R.dataflow():
lv0 = R.emit_te(topi.full, [n, n], "float32", 0)
lv1 = R.emit_te(topi.trilu, lv0, tvm.tir.const(1, "int32"), upper=True)
lv2 = R.emit_te(topi.broadcast_to, lv1, [1, 1, n, n])
gv = R.call_pure_packed(
"vm.builtin.attention_kv_cache_view",
kv_cache,
R.shape([1 + n, 32, 128]),
sinfo_args=(R.Tensor((1 + n, 32, 128), dtype="float32"),),
)
R.output(gv, lv2)
return gv, lv2
@I.ir_module
class Expected:
@R.function(private=True)
def fused_full_trilu_broadcast_to(
s: R.Shape(["n"]),
) -> R.Tensor([1, 1, "n", "n"], "float32"):
R.func_attr({"Primitive": True})
n = T.int64()
with R.dataflow():
lv0 = R.emit_te(topi.full, [n, n], "float32", 0)
lv1 = R.emit_te(topi.trilu, lv0, tvm.tir.const(1, "int32"), upper=True)
gv = R.emit_te(topi.broadcast_to, lv1, [1, 1, n, n])
R.output(gv)
return gv
@R.function
def main(s: R.Shape(["n"]), kv_cache: R.Object):
cls = Expected
n = T.int64()
with R.dataflow():
lv: R.Tensor([1, 1, n, n], "float32") = cls.fused_full_trilu_broadcast_to(
R.shape([n])
)
gv = R.call_pure_packed(
"vm.builtin.attention_kv_cache_view",
kv_cache,
R.shape([1 + n, 32, 128]),
sinfo_args=(R.Tensor((1 + n, 32, 128), dtype="float32"),),
)
R.output(gv, lv)
return gv, lv
_check(Before, Expected)
测试跳过 match_cast 的算子融合#
该测试验证当函数中包含 match_cast 算子时,FuseOps 变换是否会跳过这些算子,保持原始结构。
@I.ir_module
class Module:
@R.function
def main(A: R.Tensor((10, 20), dtype="float32")) -> R.Tensor(dtype="float32", ndim=2):
m = T.int64()
n = T.int64()
with R.dataflow():
lv: R.Tensor((m, n), dtype="float32") = R.match_cast(
A, R.Tensor((m, n), dtype="float32")
)
gv: R.Tensor((m, n), dtype="float32") = lv
R.output(gv)
return gv
_check(Module, Module)
测试包含原始值参数的算子融合#
该测试验证当函数调用包含原始值参数(如整数、字符串、数据类型)时,算子融合是否能正确处理这些情况。
@I.ir_module
class Module:
@R.function
def main(inp: R.Tensor((2, 2), dtype="float32")) -> R.Tensor((2, 2), dtype="float32"):
with R.dataflow():
lv = R.call_pure_packed(
"my_func1", inp, R.prim_value(0), sinfo_args=[R.Tensor((2, 2), dtype="float32")]
)
lv1 = R.call_pure_packed(
"my_func2", lv, R.str("str"), sinfo_args=[R.Tensor((2, 2), dtype="float32")]
)
gv = R.call_pure_packed(
"my_func3",
lv1,
R.dtype("float32"),
sinfo_args=[R.Tensor((2, 2), dtype="float32")],
)
R.output(gv)
return gv
_check(Module, Module)
测试部分使用元组参数的算子融合。#
该测试验证当函数参数是元组且只使用了其中一部分元素时,算子融合是否能正确处理这种情况。
@I.ir_module
class Module:
@R.function
def main(
x: R.Tuple(
R.Tensor((2,), "float32"),
R.Tensor((2,), "float32"),
R.Tensor((2,), "float32"),
R.Tensor((2,), "float32"),
R.Tensor((2,), "float32"),
R.Tensor((2,), "float32"),
),
):
with R.dataflow():
x0 = x[0]
y0 = R.emit_te(topi.add, x0, R.const(1, "float32"))
y1 = R.emit_te(topi.divide, y0, R.const(1, "float32"))
gv = y1
R.output(gv)
return gv
@I.ir_module
class Expected:
@R.function(private=True)
def fused_add_divide(
x_0: R.Tensor((2,), dtype="float32"),
param_0: R.Tensor((), dtype="float32"),
param_1: R.Tensor((), dtype="float32"),
) -> R.Tensor((2,), dtype="float32"):
R.func_attr({"Primitive": True})
with R.dataflow():
y0 = R.emit_te(topi.add, x_0, param_0)
gv = R.emit_te(topi.divide, y0, param_1)
R.output(gv)
return gv
@R.function
def main(
x: R.Tuple(
R.Tensor((2,), dtype="float32"),
R.Tensor((2,), dtype="float32"),
R.Tensor((2,), dtype="float32"),
R.Tensor((2,), dtype="float32"),
R.Tensor((2,), dtype="float32"),
R.Tensor((2,), dtype="float32"),
),
) -> R.Tensor((2,), dtype="float32"):
cls = Expected
with R.dataflow():
lv: R.Tensor((2,), dtype="float32") = x[0]
lv1: R.Tensor((2,), dtype="float32") = cls.fused_add_divide(
lv, R.const(1, "float32"), R.const(1, "float32")
)
gv: R.Tensor((2,), dtype="float32") = lv1
R.output(gv)
return gv
_check(Module, Expected)
测试包含 in-place 算子的算子融合#
该测试验证当函数中包含原地(in-place)算子时,算子融合是否能正确处理这些算子。
@I.ir_module
class Module:
@T.prim_func(private=True)
def add(
A: T.Buffer((T.int64(10), T.int64(20)), "float32"),
B: T.Buffer((), "float32"),
Out: T.Buffer((T.int64(10), T.int64(20)), "float32"),
):
T.func_attr({"tir.noalias": True})
for ax0, ax1 in T.grid(T.int64(10), T.int64(20)):
with T.block("T_add"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(A[v_ax0, v_ax1], B[()])
T.writes(Out[v_ax0, v_ax1])
Out[v_ax0, v_ax1] = A[v_ax0, v_ax1] + B[()]
@T.prim_func(private=True)
def exp_inplace(A: T.Buffer((T.int64(10), T.int64(20)), "float32")):
T.func_attr({"tir.noalias": True})
for i0, i1 in T.grid(T.int64(10), T.int64(20)):
with T.block("compute"):
v_i0, v_i1 = T.axis.remap("SS", [i0, i1])
T.reads(A[v_i0, v_i1])
T.writes(A[v_i0, v_i1])
A[v_i0, v_i1] = T.exp(A[v_i0, v_i1])
@T.prim_func(private=True)
def squeeze_inplace(A: T.Buffer((T.int64(10), T.int64(20)), "float32")):
T.func_attr({"tir.noalias": True})
for ax0, ax1 in T.grid(T.int64(10), T.int64(20)):
with T.block("T_squeeze"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(A[v_ax0, v_ax1])
T.writes(A[v_ax0, v_ax1])
A[v_ax0, v_ax1] = A[v_ax0, v_ax1]
@R.function
def main(
x: R.Tensor((10, 20), dtype="float32"), p0: R.Tensor((), dtype="float32")
) -> R.Tensor((10, 20), dtype="float32"):
cls = Module
with R.dataflow():
lv = R.call_tir(
cls.add,
(x, p0),
out_sinfo=R.Tensor((10, 20), dtype="float32"),
)
lv1 = R.call_tir_inplace(
cls.exp_inplace,
(lv,),
inplace_indices=[0],
out_sinfo=R.Tensor((10, 20), dtype="float32"),
)
gv = R.call_tir_inplace(
cls.squeeze_inplace,
(lv1,),
inplace_indices=[0],
out_sinfo=R.Tensor((10, 20), dtype="float32"),
)
R.output(gv)
return gv
@I.ir_module
class Expected:
@T.prim_func(private=True)
def add(
A: T.Buffer((T.int64(10), T.int64(20)), "float32"),
B: T.Buffer((), "float32"),
Out: T.Buffer((T.int64(10), T.int64(20)), "float32"),
):
T.func_attr({"tir.noalias": True, "op_pattern": 0})
for ax0, ax1 in T.grid(T.int64(10), T.int64(20)):
with T.block("T_add"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(A[v_ax0, v_ax1], B[()])
T.writes(Out[v_ax0, v_ax1])
Out[v_ax0, v_ax1] = A[v_ax0, v_ax1] + B[()]
@T.prim_func(private=True)
def exp_inplace(A: T.Buffer((T.int64(10), T.int64(20)), "float32")):
T.func_attr({"tir.noalias": True, "op_pattern": 0})
for i0, i1 in T.grid(T.int64(10), T.int64(20)):
with T.block("compute"):
v_i0, v_i1 = T.axis.remap("SS", [i0, i1])
T.reads(A[v_i0, v_i1])
T.writes(A[v_i0, v_i1])
A[v_i0, v_i1] = T.exp(A[v_i0, v_i1])
@T.prim_func(private=True)
def squeeze_inplace(A: T.Buffer((T.int64(10), T.int64(20)), "float32")):
T.func_attr({"tir.noalias": True, "op_pattern": 0})
for ax0, ax1 in T.grid(T.int64(10), T.int64(20)):
with T.block("T_squeeze"):
v_ax0, v_ax1 = T.axis.remap("SS", [ax0, ax1])
T.reads(A[v_ax0, v_ax1])
T.writes(A[v_ax0, v_ax1])
A[v_ax0, v_ax1] = A[v_ax0, v_ax1]
@R.function(private=True)
def fused_add_exp_inplace_squeeze_inplace(
x: R.Tensor((10, 20), dtype="float32"), p0: R.Tensor((), dtype="float32")
) -> R.Tensor((10, 20), dtype="float32"):
R.func_attr({"Primitive": True})
cls = Expected
with R.dataflow():
lv = R.call_tir(
cls.add,
(x, p0),
out_sinfo=R.Tensor((10, 20), dtype="float32"),
)
lv1 = R.call_tir_inplace(
cls.exp_inplace,
(lv,),
inplace_indices=[0],
out_sinfo=R.Tensor((10, 20), dtype="float32"),
)
gv = R.call_tir_inplace(
cls.squeeze_inplace,
(lv1,),
inplace_indices=[0],
out_sinfo=R.Tensor((10, 20), dtype="float32"),
)
R.output(gv)
return gv
@R.function
def main(
x: R.Tensor((10, 20), dtype="float32"), p0: R.Tensor((), dtype="float32")
) -> R.Tensor((10, 20), dtype="float32"):
cls = Expected
with R.dataflow():
gv1: R.Tensor(
(10, 20), dtype="float32"
) = cls.fused_add_exp_inplace_squeeze_inplace(x, p0)
R.output(gv1)
return gv1
_check(Module, Expected)
测试包含打包参数的算子融合#
该测试验证当函数参数是打包的元组时,算子融合是否能正确处理这种情况。
@I.ir_module
class Before:
@T.prim_func(private=True)
def cast(lv: T.Buffer((T.int64(16), T.int64(16)), "float16"), compute: T.Buffer((T.int64(16), T.int64(16)), "float32")):
T.func_attr({"tir.noalias": True})
# with T.block("root"):
for i0, i1 in T.grid(T.int64(16), T.int64(16)):
with T.block("compute"):
v_i0, v_i1 = T.axis.remap("SS", [i0, i1])
T.reads(lv[v_i0, v_i1])
T.writes(compute[v_i0, v_i1])
compute[v_i0, v_i1] = T.Cast("float32", lv[v_i0, v_i1])
@T.prim_func(private=True)
def matmul(x: T.Buffer((T.int64(16), T.int64(16)), "float32"), lv2: T.Buffer((T.int64(16), T.int64(16)), "float32"), T_matmul: T.Buffer((T.int64(16), T.int64(16)), "float32")):
T.func_attr({"tir.noalias": True})
# with T.block("root"):
for ax0, ax1, k in T.grid(T.int64(16), T.int64(16), T.int64(16)):
with T.block("T_matmul"):
v_ax0, v_ax1, v_k = T.axis.remap("SSR", [ax0, ax1, k])
T.reads(x[v_ax0, v_k], lv2[v_k, v_ax1])
T.writes(T_matmul[v_ax0, v_ax1])
with T.init():
T_matmul[v_ax0, v_ax1] = T.float32(0)
T_matmul[v_ax0, v_ax1] = T_matmul[v_ax0, v_ax1] + x[v_ax0, v_k] * lv2[v_k, v_ax1]
@R.function
def main(x: R.Tensor((16, 16), dtype="float32"), packed_params: R.Tuple(R.Tensor((16, 16), dtype="float16"), R.Tensor((16, 16), dtype="float16"))) -> R.Tensor((16, 16), dtype="float32"):
R.func_attr({"num_input": 1})
cls = Before
with R.dataflow():
lv: R.Tensor((16, 16), dtype="float16") = packed_params[0]
lv1: R.Tensor((16, 16), dtype="float16") = packed_params[1]
lv2 = R.call_tir(cls.cast, (lv,), out_sinfo=R.Tensor((16, 16), dtype="float32"))
lv3 = R.call_tir(cls.matmul, (x, lv2), out_sinfo=R.Tensor((16, 16), dtype="float32"))
lv4 = R.call_tir(cls.cast, (lv1,), out_sinfo=R.Tensor((16, 16), dtype="float32"))
lv5 = R.call_tir(cls.matmul, (lv3, lv4), out_sinfo=R.Tensor((16, 16), dtype="float32"))
gv: R.Tensor((16, 16), dtype="float32") = lv5
R.output(gv)
return gv
# fmt: on
Expected = Before
_check(Before, Expected)