import torch
import numpy as np
from tvm import ffi as tvm_ffi
import time
def print_speed(name, speed):
print(f"{name:<40} {speed} sec/call")
def print_error(name, error):
print(f"{name:<40} {error}")
def baseline_torch_add(repeat):
"""Run torch.add with one element"""
def run_bench(device):
x = torch.arange(1, device=device)
y = torch.arange(1, device=device)
z = torch.arange(1, device=device)
torch.add(x, y, out=z)
if device == "cuda":
torch.cuda.synchronize()
start = time.time()
for i in range(repeat):
torch.add(x, y, out=z)
# note we deliberately do not use torch.cuda.synchronize()
# because we want to see the overhead of the FFI call.
end = time.time()
print_speed(f"torch.add[{device}]", (end - start) / repeat)
# rough take away: add on cuda roughly takes 3e-6 sec/call
run_bench("cpu")
run_bench("cuda")
def baseline_numpy_add(repeat):
"""Run numpy.add with one element"""
x = np.arange(1)
y = np.arange(1)
z = np.arange(1)
np.add(x, y, out=z)
start = time.time()
for i in range(repeat):
np.add(x, y, out=z)
end = time.time()
speed = (end - start) / repeat
print_speed("numpy.add", speed)
def baseline_cupy_add(repeat):
"""Run cupy.add with one element"""
try:
import cupy
except ImportError:
# skip if cupy is not installed
return
x = cupy.arange(1)
y = cupy.arange(1)
z = cupy.arange(1)
cupy.add(x, y, out=z)
start = time.time()
for i in range(repeat):
cupy.add(x, y, out=z)
end = time.time()
speed = (end - start) / repeat
print_speed("cupy.add", speed)
def tvm_ffi_nop(repeat):
"""Overhead of tvm FFI python call via calling a NOP.
testing.nop is defined in c++ and do nothing.
"""
nop = tvm_ffi.get_global_func("testing.nop")
x = tvm_ffi.from_dlpack(torch.arange(1))
y = tvm_ffi.from_dlpack(torch.arange(1))
z = tvm_ffi.from_dlpack(torch.arange(1))
nop(x, y, z)
start = time.time()
for i in range(repeat):
y = tvm_ffi.from_dlpack(x)
end = time.time()
print_speed("tvm.ffi.nop", (end - start) / repeat)
def bench_ffi_nop_from_dlpack(name, x, y, z, repeat):
"""run dlpack conversion + tvm.ffi.nop
Measures overhead of running dlpack for each args then invoke
"""
nop = tvm_ffi.get_global_func("testing.nop")
tx = tvm_ffi.from_dlpack(x)
ty = tvm_ffi.from_dlpack(y)
tz = tvm_ffi.from_dlpack(z)
nop(tx, ty, tz)
start = time.time()
for i in range(repeat):
tx = tvm_ffi.from_dlpack(x)
ty = tvm_ffi.from_dlpack(y)
tz = tvm_ffi.from_dlpack(z)
nop(tx, ty, tz)
end = time.time()
print_speed(name, (end - start) / repeat)
def tvm_ffi_nop_from_torch_dlpack(repeat):
"""run dlpack conversion + tvm.ffi.nop
Measures overhead of running dlpack for each args then invoke
"""
x = torch.arange(1)
y = torch.arange(1)
z = torch.arange(1)
bench_ffi_nop_from_dlpack("tvm.ffi.nop+from_dlpack(torch)", x, y, z, repeat)
def tvm_ffi_nop_from_numpy_dlpack(repeat):
"""run dlpack conversion + tvm.ffi.nop
Measures overhead of running dlpack for each args then invoke
"""
x = np.arange(1)
y = np.arange(1)
z = np.arange(1)
bench_ffi_nop_from_dlpack("tvm.ffi.nop+from_dlpack(numpy)", x, y, z, repeat)
def tvm_ffi_self_dlpack_nop(repeat):
"""run dlpack conversion + tvm.ffi.nop
Measures overhead of running dlpack for each args then invoke
"""
x = tvm_ffi.from_dlpack(torch.arange(1))
y = tvm_ffi.from_dlpack(torch.arange(1))
z = tvm_ffi.from_dlpack(torch.arange(1))
bench_ffi_nop_from_dlpack("tvm.ffi.nop+from_dlpack(tvm)", x, y, z, repeat)
def bench_ffi_nop_from_dlpack(name, x, y, z, repeat):
"""run dlpack conversion + tvm.ffi.nop
Measures overhead of running dlpack for each args then invoke
"""
nop = tvm_ffi.get_global_func("testing.nop")
tx = tvm_ffi.from_dlpack(x)
ty = tvm_ffi.from_dlpack(y)
tz = tvm_ffi.from_dlpack(z)
nop(tx, ty, tz)
start = time.time()
for i in range(repeat):
tx = tvm_ffi.from_dlpack(x)
ty = tvm_ffi.from_dlpack(y)
tz = tvm_ffi.from_dlpack(z)
nop(tx, ty, tz)
end = time.time()
print_speed(name, (end - start) / repeat)
def tvm_ffi_nop_from_torch_utils_to_dlpack(repeat):
"""
Measures overhead of running dlpack for each args then invoke
but uses the legacy torch.utils.dlpack.to_dlpack API
This helps to measure possible implementation overhead of torch.
"""
nop = tvm_ffi.get_global_func("testing.nop")
x = torch.arange(1)
y = torch.arange(1)
z = torch.arange(1)
tx = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(x))
ty = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(y))
tz = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(z))
nop(tx, ty, tz)
start = time.time()
for i in range(repeat):
tx = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(x))
ty = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(y))
tz = tvm_ffi.from_dlpack(torch.utils.dlpack.to_dlpack(z))
nop(tx, ty, tz)
end = time.time()
speed = (end - start) / repeat
print_speed("tvm.ffi.nop+from_dlpack(torch.utils)", speed)
def bench_tvm_ffi_nop_autodlpack(name, x, y, z, repeat):
"""
Measures overhead of running dlpack via auto convert by directly
take torch.Tensor as inputs.
"""
nop = tvm_ffi.get_global_func("testing.nop")
nop(x, y, z)
start = time.time()
for i in range(repeat):
nop(x, y, z)
end = time.time()
speed = (end - start) / repeat
print_speed(name, speed)
def tvm_ffi_nop_autodlpack_from_torch(repeat, device="cpu"):
"""
Measures overhead of running dlpack via auto convert by directly
take torch.Tensor as inputs.
"""
# use larger to ensure alignment req is met
x = torch.arange(1, device=device)
y = torch.arange(1, device=device)
z = torch.arange(1, device=device)
bench_tvm_ffi_nop_autodlpack(f"tvm.ffi.nop.autodlpack(torch[{device}])", x, y, z, repeat)
def tvm_ffi_nop_autodlpack_from_numpy(repeat):
"""
Measures overhead of running dlpack via auto convert by directly
take numpy.ndarray as inputs.
"""
# use larger to ensure alignment req is met
x = np.arange(256)
y = np.arange(256)
z = np.arange(256)
bench_tvm_ffi_nop_autodlpack("tvm.ffi.nop.autodlpack(numpy)", x, y, z, repeat)
def bench_to_dlpack(x, name, repeat):
x.__dlpack__()
start = time.time()
for i in range(repeat):
x.__dlpack__()
end = time.time()
speed = (end - start) / repeat
print_speed(name, speed)
def bench_to_dlpack_versioned(x, name, repeat, max_version=(1, 1)):
"""
Measures overhead of running dlpack with latest 1.1.
"""
try:
x.__dlpack__(max_version=max_version)
start = time.time()
for i in range(repeat):
x.__dlpack__(max_version=max_version)
end = time.time()
speed = (end - start) / repeat
print_speed(name, speed)
except Exception as e:
print_error(name, e)
def bench_torch_utils_to_dlpack(repeat):
"""
Measures overhead of running torch.utils.dlpack.to_dlpack
"""
x = torch.arange(1)
torch.utils.dlpack.to_dlpack(x)
start = time.time()
for i in range(repeat):
torch.utils.dlpack.to_dlpack(x)
end = time.time()
speed = (end - start) / repeat
print_speed("torch.utils.dlpack.to_dlpack", speed)
def main():
repeat = 10000
print("-----------------------------")
print("Benchmark f(x, y, z) overhead")
print("-----------------------------")
baseline_numpy_add(repeat)
baseline_torch_add(repeat)
baseline_cupy_add(repeat)
tvm_ffi_nop(repeat)
tvm_ffi_nop_from_torch_dlpack(repeat)
tvm_ffi_nop_from_numpy_dlpack(repeat)
tvm_ffi_self_dlpack_nop(repeat)
tvm_ffi_nop_from_torch_utils_to_dlpack(repeat)
tvm_ffi_nop_autodlpack_from_torch(repeat, "cpu")
tvm_ffi_nop_autodlpack_from_torch(repeat, "cuda")
tvm_ffi_nop_autodlpack_from_numpy(repeat)
print("-------------------------------")
print("Benchmark x.__dlpack__ overhead")
print("-------------------------------")
bench_torch_utils_to_dlpack(repeat)
bench_to_dlpack(torch.arange(1), "torch.__dlpack__", repeat)
bench_to_dlpack(np.arange(1), "numpy.__dlpack__", repeat)
bench_to_dlpack(tvm_ffi.from_dlpack(torch.arange(1)), "tvm.__dlpack__", repeat)
print("---------------------------------------------------")
print("Benchmark x.__dlpack__(max_version=(1,1)) overhead")
print("---------------------------------------------------")
bench_to_dlpack_versioned(torch.arange(1), "torch.__dlpack__(max_version=(1,1))", repeat)
bench_to_dlpack_versioned(np.arange(1), "numpy.__dlpack__(max_version=(1,1))", repeat)
bench_to_dlpack_versioned(
tvm_ffi.from_dlpack(torch.arange(1)), "tvm.__dlpack__(max_version=(1,1))", repeat
)
if __name__ == "__main__":
main()