n=te.size_var("n")m=te.size_var("m")A=te.placeholder((n,m),name="A")k=te.reduce_axis((0,m),"k")k_=te.reduce_axis((0,m-1),"k_")f1=lambdai:te.sum(A[i,k],axis=k)f2=lambdai:A[i,0]+1f3=lambdai:te.sum(A[i,k],axis=k)+1f4=lambdai:A[i,0]*(te.sum(A[i,k],axis=k)+1)f5=lambdai:(te.sum(A[i,k],axis=k),A[i,0]+1)f6=lambdai:(te.sum(A[i,k],axis=k),te.sum(A[i,k_],axis=k_))## Valid computetry:B=te.compute((n,),f1,name="B")excepttvm._ffi.base.TVMErrorasex:assertFalse## Valid computetry:B=te.compute((n,),f2,name="B")excepttvm._ffi.base.TVMErrorasex:assertFalse## Invalid compute with non top level reductiontry:B=te.compute((n,),f3,name="B")assertFalseexcepttvm._ffi.base.TVMErrorasex:pass## Invalid compute with non top level reductiontry:B=te.compute((n,),f4,name="B")assertFalseexcepttvm._ffi.base.TVMErrorasex:pass## Invalid compute with reduction and non-reduction batch opstry:B0,B1=te.compute((n,),f5,name="B")assertFalseexcepttvm._ffi.base.TVMErrorasex:pass## Invalid compute with unequal batch reduction opstry:B0,B1=te.compute((n,),f6,name="B")assertFalseexcepttvm._ffi.base.TVMErrorasex:pass