# from tvm.script import ir as I
# from tvm.script import relax as R
@I.ir_module
class Module:
@R.function
def _initialize_effect() -> R.Tuple(R.Object):
with R.dataflow():
_io: R.Object = R.null_value()
lv: R.Tuple(R.Object) = (_io,)
gv: R.Tuple(R.Object) = lv
R.output(gv)
return gv
@R.function
def test(x: R.Tensor((1, 10), dtype="float32"), _io: R.Object) -> R.Tuple(R.Tuple(R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32")), R.Tuple(R.Object)):
R.func_attr({"num_input": 2})
with R.dataflow():
add: R.Tensor((1, 10), dtype="float32") = R.add(x, R.const(10.0, "float32"))
add1: R.Tensor((1, 10), dtype="float32") = R.add(x, R.const(10.0, "float32"))
mul: R.Tensor((1, 10), dtype="float32") = R.multiply(x, R.const(10.0, "float32"))
divide: R.Tensor((1, 10), dtype="float32") = R.divide(x, R.const(10.0, "float32"))
maximum: R.Tensor((1, 10), dtype="float32") = R.maximum(x, R.const(10.0, "float32"))
minimum: R.Tensor((1, 10), dtype="float32") = R.minimum(x, R.const(10.0, "float32"))
gv1: R.Tuple(R.Tuple(R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32"), R.Tensor((1, 10), dtype="float32")), R.Tuple(R.Object)) = (add, add1, mul, divide, maximum, minimum), (_io,)
R.output(gv1)
return gv1