测试

测试#

model_path = "/media/pc/data/board/arria10/lxw/tasks/tools/npuusertools/models/telecom/onnx/Nin1_helmet_large/helmet_large.onnx"
import onnx
import onnxscript
import onnx.inliner
model = onnx.load(model_path)
# model = onnxscript.optimizer.optimize(model)
# model = onnx.inliner.inline_local_functions(model)
# model = onnxscript.optimizer.optimize(model)
# onnx.save(model, "test.onnx")
import tvm
from tvm import relax
from tvm.relax.frontend.onnx import from_onnx

model = from_onnx(model, keep_params_in_input=False)
# # 将算子转换为推理模式
# tvm_model = relax.transform.DecomposeOpsForInference()(tvm_model)
# tvm_model.show()
# # 将任何 Relax 算子合法化为 TensorIR
# tvm_model = relax.transform.LegalizeOps()(tvm_model)

# # 将模型与参数分离
# tvm_model, params = relax.frontend.detach_params(tvm_model)
# # 将 Relax 图编译为虚拟机(VM)然后运行
# with tvm.transform.PassContext(opt_level=3):
#     ex = relax.build(tvm_model, target="llvm")
#     vm = relax.VirtualMachine(ex, tvm.cpu())
model.show()
# from tvm.script import ir as I
# from tvm.script import tir as T
# from tvm.script import relax as R

@I.ir_module
class Module:
    @T.prim_func(private=True)
    def maximum(A: T.Buffer((T.int64(1), T.int64(16), T.int64(128), T.int64(96)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(16), T.int64(128), T.int64(96)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(16), T.int64(128), T.int64(96)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum1(A: T.Buffer((T.int64(1), T.int64(240), T.int64(32), T.int64(24)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(240), T.int64(32), T.int64(24)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(240), T.int64(32), T.int64(24)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum2(A: T.Buffer((T.int64(1), T.int64(240), T.int64(16), T.int64(12)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(240), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(240), T.int64(16), T.int64(12)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum3(A: T.Buffer((T.int64(1), T.int64(200), T.int64(16), T.int64(12)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(200), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(200), T.int64(16), T.int64(12)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum4(A: T.Buffer((T.int64(1), T.int64(184), T.int64(16), T.int64(12)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(184), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(184), T.int64(16), T.int64(12)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum5(A: T.Buffer((T.int64(1), T.int64(480), T.int64(16), T.int64(12)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(480), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(480), T.int64(16), T.int64(12)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum6(A: T.Buffer((T.int64(1), T.int64(672), T.int64(16), T.int64(12)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(672), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(672), T.int64(16), T.int64(12)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum7(A: T.Buffer((T.int64(1), T.int64(672), T.int64(8), T.int64(6)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(672), T.int64(8), T.int64(6)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(672), T.int64(8), T.int64(6)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum8(A: T.Buffer((T.int64(1), T.int64(960), T.int64(8), T.int64(6)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(960), T.int64(8), T.int64(6)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(960), T.int64(8), T.int64(6)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def maximum9(A: T.Buffer((T.int64(1), T.int64(1280), T.int64(8), T.int64(6)), "float32"), T_maximum: T.Buffer((T.int64(1), T.int64(1280), T.int64(8), T.int64(6)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(1280), T.int64(8), T.int64(6)):
            with T.block("T_maximum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(A[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_maximum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_maximum[v_ax0, v_ax1, v_ax2, v_ax3] = T.max(A[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("-inf"))

    @T.prim_func(private=True)
    def minimum(lv4: T.Buffer((T.int64(1), T.int64(16), T.int64(128), T.int64(96)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(16), T.int64(128), T.int64(96)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(16), T.int64(128), T.int64(96)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv4[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv4[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum1(lv114: T.Buffer((T.int64(1), T.int64(240), T.int64(32), T.int64(24)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(240), T.int64(32), T.int64(24)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(240), T.int64(32), T.int64(24)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv114[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv114[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum2(lv122: T.Buffer((T.int64(1), T.int64(240), T.int64(16), T.int64(12)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(240), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(240), T.int64(16), T.int64(12)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv122[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv122[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum3(lv133: T.Buffer((T.int64(1), T.int64(200), T.int64(16), T.int64(12)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(200), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(200), T.int64(16), T.int64(12)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv133[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv133[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum4(lv153: T.Buffer((T.int64(1), T.int64(184), T.int64(16), T.int64(12)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(184), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(184), T.int64(16), T.int64(12)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv153[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv153[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum5(lv193: T.Buffer((T.int64(1), T.int64(480), T.int64(16), T.int64(12)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(480), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(480), T.int64(16), T.int64(12)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv193[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv193[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum6(lv224: T.Buffer((T.int64(1), T.int64(672), T.int64(16), T.int64(12)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(672), T.int64(16), T.int64(12)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(672), T.int64(16), T.int64(12)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv224[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv224[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum7(lv264: T.Buffer((T.int64(1), T.int64(672), T.int64(8), T.int64(6)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(672), T.int64(8), T.int64(6)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(672), T.int64(8), T.int64(6)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv264[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv264[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum8(lv287: T.Buffer((T.int64(1), T.int64(960), T.int64(8), T.int64(6)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(960), T.int64(8), T.int64(6)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(960), T.int64(8), T.int64(6)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv287[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv287[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @T.prim_func(private=True)
    def minimum9(lv358: T.Buffer((T.int64(1), T.int64(1280), T.int64(8), T.int64(6)), "float32"), T_minimum: T.Buffer((T.int64(1), T.int64(1280), T.int64(8), T.int64(6)), "float32")):
        T.func_attr({"tir.noalias": T.bool(True)})
        # with T.block("root"):
        for ax0, ax1, ax2, ax3 in T.grid(T.int64(1), T.int64(1280), T.int64(8), T.int64(6)):
            with T.block("T_minimum"):
                v_ax0, v_ax1, v_ax2, v_ax3 = T.axis.remap("SSSS", [ax0, ax1, ax2, ax3])
                T.reads(lv358[v_ax0, v_ax1, v_ax2, v_ax3])
                T.writes(T_minimum[v_ax0, v_ax1, v_ax2, v_ax3])
                T_minimum[v_ax0, v_ax1, v_ax2, v_ax3] = T.min(lv358[v_ax0, v_ax1, v_ax2, v_ax3], T.float32("inf"))

    @R.function
    def main(images: R.Tensor((1, 3, 256, 192), dtype="float32")) -> R.Tensor((1, 9), dtype="float32"):
        R.func_attr({"num_input": 1})
        cls = Module
        with R.dataflow():
            lv: R.Tensor((1, 16, 128, 96), dtype="float32") = R.nn.conv2d(images, metadata["relax.expr.Constant"][0], strides=[2, 2], padding=[1, 1, 1, 1], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv1: R.Tensor((1, 16, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][1], R.shape([1, 16, 1, 1]))
            lv2: R.Tensor((1, 16, 128, 96), dtype="float32") = R.add(lv, lv1)
            lv3: R.Tensor((1, 16, 128, 96), dtype="float32") = R.add(lv2, R.const(3.0, "float32"))
            lv4 = R.call_tir(cls.maximum, (lv3,), out_sinfo=R.Tensor((1, 16, 128, 96), dtype="float32"))
            lv5 = R.call_tir(cls.minimum, (lv4,), out_sinfo=R.Tensor((1, 16, 128, 96), dtype="float32"))
            lv6: R.Tensor((1, 16, 128, 96), dtype="float32") = R.divide(lv5, R.const(6.0, "float32"))
            lv7: R.Tensor((1, 16, 128, 96), dtype="float32") = R.multiply(lv2, lv6)
            lv8: R.Tensor((1, 16, 128, 96), dtype="float32") = R.nn.conv2d(lv7, metadata["relax.expr.Constant"][2], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=16, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv9: R.Tensor((1, 16, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][3], R.shape([1, 16, 1, 1]))
            lv10: R.Tensor((1, 16, 128, 96), dtype="float32") = R.add(lv8, lv9)
            lv11: R.Tensor((1, 16, 128, 96), dtype="float32") = R.nn.relu(lv10)
            lv12: R.Tensor((1, 16, 128, 96), dtype="float32") = R.nn.conv2d(lv11, metadata["relax.expr.Constant"][4], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv13: R.Tensor((1, 16, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][5], R.shape([1, 16, 1, 1]))
            lv14: R.Tensor((1, 16, 128, 96), dtype="float32") = R.add(lv12, lv13)
            lv15: R.Tensor((1, 16, 128, 96), dtype="float32") = R.add(lv14, lv7)
            lv16: R.Tensor((1, 64, 128, 96), dtype="float32") = R.nn.conv2d(lv15, metadata["relax.expr.Constant"][6], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv17: R.Tensor((1, 64, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][7], R.shape([1, 64, 1, 1]))
            lv18: R.Tensor((1, 64, 128, 96), dtype="float32") = R.add(lv16, lv17)
            lv19: R.Tensor((1, 64, 128, 96), dtype="float32") = R.nn.relu(lv18)
            lv20: R.Tensor((1, 64, 64, 48), dtype="float32") = R.nn.conv2d(lv19, metadata["relax.expr.Constant"][8], strides=[2, 2], padding=[1, 1, 1, 1], dilation=[1, 1], groups=64, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv21: R.Tensor((1, 64, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][9], R.shape([1, 64, 1, 1]))
            lv22: R.Tensor((1, 64, 64, 48), dtype="float32") = R.add(lv20, lv21)
            lv23: R.Tensor((1, 64, 64, 48), dtype="float32") = R.nn.relu(lv22)
            lv24: R.Tensor((1, 24, 64, 48), dtype="float32") = R.nn.conv2d(lv23, metadata["relax.expr.Constant"][10], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv25: R.Tensor((1, 24, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][11], R.shape([1, 24, 1, 1]))
            lv26: R.Tensor((1, 24, 64, 48), dtype="float32") = R.add(lv24, lv25)
            lv27: R.Tensor((1, 72, 64, 48), dtype="float32") = R.nn.conv2d(lv26, metadata["relax.expr.Constant"][12], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv28: R.Tensor((1, 72, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][13], R.shape([1, 72, 1, 1]))
            lv29: R.Tensor((1, 72, 64, 48), dtype="float32") = R.add(lv27, lv28)
            lv30: R.Tensor((1, 72, 64, 48), dtype="float32") = R.nn.relu(lv29)
            lv31: R.Tensor((1, 72, 64, 48), dtype="float32") = R.nn.conv2d(lv30, metadata["relax.expr.Constant"][14], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=72, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv32: R.Tensor((1, 72, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][15], R.shape([1, 72, 1, 1]))
            lv33: R.Tensor((1, 72, 64, 48), dtype="float32") = R.add(lv31, lv32)
            lv34: R.Tensor((1, 72, 64, 48), dtype="float32") = R.nn.relu(lv33)
            lv35: R.Tensor((1, 24, 64, 48), dtype="float32") = R.nn.conv2d(lv34, metadata["relax.expr.Constant"][16], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv36: R.Tensor((1, 24, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][17], R.shape([1, 24, 1, 1]))
            lv37: R.Tensor((1, 24, 64, 48), dtype="float32") = R.add(lv35, lv36)
            lv38: R.Tensor((1, 24, 64, 48), dtype="float32") = R.add(lv37, lv26)
            lv39: R.Tensor((1, 72, 64, 48), dtype="float32") = R.nn.conv2d(lv38, metadata["relax.expr.Constant"][18], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv40: R.Tensor((1, 72, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][19], R.shape([1, 72, 1, 1]))
            lv41: R.Tensor((1, 72, 64, 48), dtype="float32") = R.add(lv39, lv40)
            lv42: R.Tensor((1, 72, 64, 48), dtype="float32") = R.nn.relu(lv41)
            lv43: R.Tensor((1, 72, 32, 24), dtype="float32") = R.nn.conv2d(lv42, metadata["relax.expr.Constant"][20], strides=[2, 2], padding=[2, 2, 2, 2], dilation=[1, 1], groups=72, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv44: R.Tensor((1, 72, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][21], R.shape([1, 72, 1, 1]))
            lv45: R.Tensor((1, 72, 32, 24), dtype="float32") = R.add(lv43, lv44)
            lv46: R.Tensor((1, 72, 32, 24), dtype="float32") = R.nn.relu(lv45)
            lv47: R.Tensor((1, 72, 1, 1), dtype="float32") = R.mean(lv46, axis=[2, 3], keepdims=True)
            lv48: R.Tensor((1, 24, 1, 1), dtype="float32") = R.nn.conv2d(lv47, metadata["relax.expr.Constant"][22], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv49: R.Tensor((1, 24, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][23], R.shape([1, 24, 1, 1]))
            lv50: R.Tensor((1, 24, 1, 1), dtype="float32") = R.add(lv48, lv49)
            lv51: R.Tensor((1, 24, 1, 1), dtype="float32") = R.nn.relu(lv50)
            lv52: R.Tensor((1, 72, 1, 1), dtype="float32") = R.nn.conv2d(lv51, metadata["relax.expr.Constant"][24], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv53: R.Tensor((1, 72, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][25], R.shape([1, 72, 1, 1]))
            lv54: R.Tensor((1, 72, 1, 1), dtype="float32") = R.add(lv52, lv53)
            lv55: R.Tensor((1, 72, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv54)
            lv56: R.Tensor((1, 72, 1, 1), dtype="float32") = R.add(lv55, R.const(0.5, "float32"))
            lv57: R.Tensor((1, 72, 1, 1), dtype="float32") = R.clip(lv56, R.prim_value(0), R.prim_value(1))
            lv58: R.Tensor((1, 72, 32, 24), dtype="float32") = R.multiply(lv57, lv46)
            lv59: R.Tensor((1, 40, 32, 24), dtype="float32") = R.nn.conv2d(lv58, metadata["relax.expr.Constant"][26], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv60: R.Tensor((1, 40, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][27], R.shape([1, 40, 1, 1]))
            lv61: R.Tensor((1, 40, 32, 24), dtype="float32") = R.add(lv59, lv60)
            lv62: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.conv2d(lv61, metadata["relax.expr.Constant"][28], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv63: R.Tensor((1, 120, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][29], R.shape([1, 120, 1, 1]))
            lv64: R.Tensor((1, 120, 32, 24), dtype="float32") = R.add(lv62, lv63)
            lv65: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.relu(lv64)
            lv66: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.conv2d(lv65, metadata["relax.expr.Constant"][30], strides=[1, 1], padding=[2, 2, 2, 2], dilation=[1, 1], groups=120, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv67: R.Tensor((1, 120, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][31], R.shape([1, 120, 1, 1]))
            lv68: R.Tensor((1, 120, 32, 24), dtype="float32") = R.add(lv66, lv67)
            lv69: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.relu(lv68)
            lv70: R.Tensor((1, 120, 1, 1), dtype="float32") = R.mean(lv69, axis=[2, 3], keepdims=True)
            lv71: R.Tensor((1, 32, 1, 1), dtype="float32") = R.nn.conv2d(lv70, metadata["relax.expr.Constant"][32], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv72: R.Tensor((1, 32, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][33], R.shape([1, 32, 1, 1]))
            lv73: R.Tensor((1, 32, 1, 1), dtype="float32") = R.add(lv71, lv72)
            lv74: R.Tensor((1, 32, 1, 1), dtype="float32") = R.nn.relu(lv73)
            lv75: R.Tensor((1, 120, 1, 1), dtype="float32") = R.nn.conv2d(lv74, metadata["relax.expr.Constant"][34], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv76: R.Tensor((1, 120, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][35], R.shape([1, 120, 1, 1]))
            lv77: R.Tensor((1, 120, 1, 1), dtype="float32") = R.add(lv75, lv76)
            lv78: R.Tensor((1, 120, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv77)
            lv79: R.Tensor((1, 120, 1, 1), dtype="float32") = R.add(lv78, R.const(0.5, "float32"))
            lv80: R.Tensor((1, 120, 1, 1), dtype="float32") = R.clip(lv79, R.prim_value(0), R.prim_value(1))
            lv81: R.Tensor((1, 120, 32, 24), dtype="float32") = R.multiply(lv80, lv69)
            lv82: R.Tensor((1, 40, 32, 24), dtype="float32") = R.nn.conv2d(lv81, metadata["relax.expr.Constant"][36], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv83: R.Tensor((1, 40, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][37], R.shape([1, 40, 1, 1]))
            lv84: R.Tensor((1, 40, 32, 24), dtype="float32") = R.add(lv82, lv83)
            lv85: R.Tensor((1, 40, 32, 24), dtype="float32") = R.add(lv84, lv61)
            lv86: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.conv2d(lv85, metadata["relax.expr.Constant"][38], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv87: R.Tensor((1, 120, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][39], R.shape([1, 120, 1, 1]))
            lv88: R.Tensor((1, 120, 32, 24), dtype="float32") = R.add(lv86, lv87)
            lv89: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.relu(lv88)
            lv90: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.conv2d(lv89, metadata["relax.expr.Constant"][40], strides=[1, 1], padding=[2, 2, 2, 2], dilation=[1, 1], groups=120, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv91: R.Tensor((1, 120, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][41], R.shape([1, 120, 1, 1]))
            lv92: R.Tensor((1, 120, 32, 24), dtype="float32") = R.add(lv90, lv91)
            lv93: R.Tensor((1, 120, 32, 24), dtype="float32") = R.nn.relu(lv92)
            lv94: R.Tensor((1, 120, 1, 1), dtype="float32") = R.mean(lv93, axis=[2, 3], keepdims=True)
            lv95: R.Tensor((1, 32, 1, 1), dtype="float32") = R.nn.conv2d(lv94, metadata["relax.expr.Constant"][42], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv96: R.Tensor((1, 32, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][43], R.shape([1, 32, 1, 1]))
            lv97: R.Tensor((1, 32, 1, 1), dtype="float32") = R.add(lv95, lv96)
            lv98: R.Tensor((1, 32, 1, 1), dtype="float32") = R.nn.relu(lv97)
            lv99: R.Tensor((1, 120, 1, 1), dtype="float32") = R.nn.conv2d(lv98, metadata["relax.expr.Constant"][44], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv100: R.Tensor((1, 120, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][45], R.shape([1, 120, 1, 1]))
            lv101: R.Tensor((1, 120, 1, 1), dtype="float32") = R.add(lv99, lv100)
            lv102: R.Tensor((1, 120, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv101)
            lv103: R.Tensor((1, 120, 1, 1), dtype="float32") = R.add(lv102, R.const(0.5, "float32"))
            lv104: R.Tensor((1, 120, 1, 1), dtype="float32") = R.clip(lv103, R.prim_value(0), R.prim_value(1))
            lv105: R.Tensor((1, 120, 32, 24), dtype="float32") = R.multiply(lv104, lv93)
            lv106: R.Tensor((1, 40, 32, 24), dtype="float32") = R.nn.conv2d(lv105, metadata["relax.expr.Constant"][46], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv107: R.Tensor((1, 40, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][47], R.shape([1, 40, 1, 1]))
            lv108: R.Tensor((1, 40, 32, 24), dtype="float32") = R.add(lv106, lv107)
            lv109: R.Tensor((1, 40, 32, 24), dtype="float32") = R.add(lv108, lv85)
            lv110: R.Tensor((1, 240, 32, 24), dtype="float32") = R.nn.conv2d(lv109, metadata["relax.expr.Constant"][48], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv111: R.Tensor((1, 240, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][49], R.shape([1, 240, 1, 1]))
            lv112: R.Tensor((1, 240, 32, 24), dtype="float32") = R.add(lv110, lv111)
            lv113: R.Tensor((1, 240, 32, 24), dtype="float32") = R.add(lv112, R.const(3.0, "float32"))
            lv114 = R.call_tir(cls.maximum1, (lv113,), out_sinfo=R.Tensor((1, 240, 32, 24), dtype="float32"))
            lv115 = R.call_tir(cls.minimum1, (lv114,), out_sinfo=R.Tensor((1, 240, 32, 24), dtype="float32"))
            lv116: R.Tensor((1, 240, 32, 24), dtype="float32") = R.divide(lv115, R.const(6.0, "float32"))
            lv117: R.Tensor((1, 240, 32, 24), dtype="float32") = R.multiply(lv112, lv116)
            lv118: R.Tensor((1, 240, 16, 12), dtype="float32") = R.nn.conv2d(lv117, metadata["relax.expr.Constant"][50], strides=[2, 2], padding=[1, 1, 1, 1], dilation=[1, 1], groups=240, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv119: R.Tensor((1, 240, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][51], R.shape([1, 240, 1, 1]))
            lv120: R.Tensor((1, 240, 16, 12), dtype="float32") = R.add(lv118, lv119)
            lv121: R.Tensor((1, 240, 16, 12), dtype="float32") = R.add(lv120, R.const(3.0, "float32"))
            lv122 = R.call_tir(cls.maximum2, (lv121,), out_sinfo=R.Tensor((1, 240, 16, 12), dtype="float32"))
            lv123 = R.call_tir(cls.minimum2, (lv122,), out_sinfo=R.Tensor((1, 240, 16, 12), dtype="float32"))
            lv124: R.Tensor((1, 240, 16, 12), dtype="float32") = R.divide(lv123, R.const(6.0, "float32"))
            lv125: R.Tensor((1, 240, 16, 12), dtype="float32") = R.multiply(lv120, lv124)
            lv126: R.Tensor((1, 80, 16, 12), dtype="float32") = R.nn.conv2d(lv125, metadata["relax.expr.Constant"][52], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv127: R.Tensor((1, 80, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][53], R.shape([1, 80, 1, 1]))
            lv128: R.Tensor((1, 80, 16, 12), dtype="float32") = R.add(lv126, lv127)
            lv129: R.Tensor((1, 200, 16, 12), dtype="float32") = R.nn.conv2d(lv128, metadata["relax.expr.Constant"][54], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv130: R.Tensor((1, 200, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][55], R.shape([1, 200, 1, 1]))
            lv131: R.Tensor((1, 200, 16, 12), dtype="float32") = R.add(lv129, lv130)
            lv132: R.Tensor((1, 200, 16, 12), dtype="float32") = R.add(lv131, R.const(3.0, "float32"))
            lv133 = R.call_tir(cls.maximum3, (lv132,), out_sinfo=R.Tensor((1, 200, 16, 12), dtype="float32"))
            lv134 = R.call_tir(cls.minimum3, (lv133,), out_sinfo=R.Tensor((1, 200, 16, 12), dtype="float32"))
            lv135: R.Tensor((1, 200, 16, 12), dtype="float32") = R.divide(lv134, R.const(6.0, "float32"))
            lv136: R.Tensor((1, 200, 16, 12), dtype="float32") = R.multiply(lv131, lv135)
            lv137: R.Tensor((1, 200, 16, 12), dtype="float32") = R.nn.conv2d(lv136, metadata["relax.expr.Constant"][56], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=200, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv138: R.Tensor((1, 200, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][57], R.shape([1, 200, 1, 1]))
            lv139: R.Tensor((1, 200, 16, 12), dtype="float32") = R.add(lv137, lv138)
            lv140: R.Tensor((1, 200, 16, 12), dtype="float32") = R.add(lv139, R.const(3.0, "float32"))
            lv141 = R.call_tir(cls.maximum3, (lv140,), out_sinfo=R.Tensor((1, 200, 16, 12), dtype="float32"))
            lv142 = R.call_tir(cls.minimum3, (lv141,), out_sinfo=R.Tensor((1, 200, 16, 12), dtype="float32"))
            lv143: R.Tensor((1, 200, 16, 12), dtype="float32") = R.divide(lv142, R.const(6.0, "float32"))
            lv144: R.Tensor((1, 200, 16, 12), dtype="float32") = R.multiply(lv139, lv143)
            lv145: R.Tensor((1, 80, 16, 12), dtype="float32") = R.nn.conv2d(lv144, metadata["relax.expr.Constant"][58], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv146: R.Tensor((1, 80, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][59], R.shape([1, 80, 1, 1]))
            lv147: R.Tensor((1, 80, 16, 12), dtype="float32") = R.add(lv145, lv146)
            lv148: R.Tensor((1, 80, 16, 12), dtype="float32") = R.add(lv147, lv128)
            lv149: R.Tensor((1, 184, 16, 12), dtype="float32") = R.nn.conv2d(lv148, metadata["relax.expr.Constant"][60], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv150: R.Tensor((1, 184, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][61], R.shape([1, 184, 1, 1]))
            lv151: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv149, lv150)
            lv152: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv151, R.const(3.0, "float32"))
            lv153 = R.call_tir(cls.maximum4, (lv152,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv154 = R.call_tir(cls.minimum4, (lv153,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv155: R.Tensor((1, 184, 16, 12), dtype="float32") = R.divide(lv154, R.const(6.0, "float32"))
            lv156: R.Tensor((1, 184, 16, 12), dtype="float32") = R.multiply(lv151, lv155)
            lv157: R.Tensor((1, 184, 16, 12), dtype="float32") = R.nn.conv2d(lv156, metadata["relax.expr.Constant"][62], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=184, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv158: R.Tensor((1, 184, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][63], R.shape([1, 184, 1, 1]))
            lv159: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv157, lv158)
            lv160: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv159, R.const(3.0, "float32"))
            lv161 = R.call_tir(cls.maximum4, (lv160,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv162 = R.call_tir(cls.minimum4, (lv161,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv163: R.Tensor((1, 184, 16, 12), dtype="float32") = R.divide(lv162, R.const(6.0, "float32"))
            lv164: R.Tensor((1, 184, 16, 12), dtype="float32") = R.multiply(lv159, lv163)
            lv165: R.Tensor((1, 80, 16, 12), dtype="float32") = R.nn.conv2d(lv164, metadata["relax.expr.Constant"][64], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv166: R.Tensor((1, 80, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][65], R.shape([1, 80, 1, 1]))
            lv167: R.Tensor((1, 80, 16, 12), dtype="float32") = R.add(lv165, lv166)
            lv168: R.Tensor((1, 80, 16, 12), dtype="float32") = R.add(lv167, lv148)
            lv169: R.Tensor((1, 184, 16, 12), dtype="float32") = R.nn.conv2d(lv168, metadata["relax.expr.Constant"][66], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv170: R.Tensor((1, 184, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][67], R.shape([1, 184, 1, 1]))
            lv171: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv169, lv170)
            lv172: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv171, R.const(3.0, "float32"))
            lv173 = R.call_tir(cls.maximum4, (lv172,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv174 = R.call_tir(cls.minimum4, (lv173,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv175: R.Tensor((1, 184, 16, 12), dtype="float32") = R.divide(lv174, R.const(6.0, "float32"))
            lv176: R.Tensor((1, 184, 16, 12), dtype="float32") = R.multiply(lv171, lv175)
            lv177: R.Tensor((1, 184, 16, 12), dtype="float32") = R.nn.conv2d(lv176, metadata["relax.expr.Constant"][68], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=184, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv178: R.Tensor((1, 184, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][69], R.shape([1, 184, 1, 1]))
            lv179: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv177, lv178)
            lv180: R.Tensor((1, 184, 16, 12), dtype="float32") = R.add(lv179, R.const(3.0, "float32"))
            lv181 = R.call_tir(cls.maximum4, (lv180,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv182 = R.call_tir(cls.minimum4, (lv181,), out_sinfo=R.Tensor((1, 184, 16, 12), dtype="float32"))
            lv183: R.Tensor((1, 184, 16, 12), dtype="float32") = R.divide(lv182, R.const(6.0, "float32"))
            lv184: R.Tensor((1, 184, 16, 12), dtype="float32") = R.multiply(lv179, lv183)
            lv185: R.Tensor((1, 80, 16, 12), dtype="float32") = R.nn.conv2d(lv184, metadata["relax.expr.Constant"][70], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv186: R.Tensor((1, 80, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][71], R.shape([1, 80, 1, 1]))
            lv187: R.Tensor((1, 80, 16, 12), dtype="float32") = R.add(lv185, lv186)
            lv188: R.Tensor((1, 80, 16, 12), dtype="float32") = R.add(lv187, lv168)
            lv189: R.Tensor((1, 480, 16, 12), dtype="float32") = R.nn.conv2d(lv188, metadata["relax.expr.Constant"][72], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv190: R.Tensor((1, 480, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][73], R.shape([1, 480, 1, 1]))
            lv191: R.Tensor((1, 480, 16, 12), dtype="float32") = R.add(lv189, lv190)
            lv192: R.Tensor((1, 480, 16, 12), dtype="float32") = R.add(lv191, R.const(3.0, "float32"))
            lv193 = R.call_tir(cls.maximum5, (lv192,), out_sinfo=R.Tensor((1, 480, 16, 12), dtype="float32"))
            lv194 = R.call_tir(cls.minimum5, (lv193,), out_sinfo=R.Tensor((1, 480, 16, 12), dtype="float32"))
            lv195: R.Tensor((1, 480, 16, 12), dtype="float32") = R.divide(lv194, R.const(6.0, "float32"))
            lv196: R.Tensor((1, 480, 16, 12), dtype="float32") = R.multiply(lv191, lv195)
            lv197: R.Tensor((1, 480, 16, 12), dtype="float32") = R.nn.conv2d(lv196, metadata["relax.expr.Constant"][74], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=480, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv198: R.Tensor((1, 480, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][75], R.shape([1, 480, 1, 1]))
            lv199: R.Tensor((1, 480, 16, 12), dtype="float32") = R.add(lv197, lv198)
            lv200: R.Tensor((1, 480, 16, 12), dtype="float32") = R.add(lv199, R.const(3.0, "float32"))
            lv201 = R.call_tir(cls.maximum5, (lv200,), out_sinfo=R.Tensor((1, 480, 16, 12), dtype="float32"))
            lv202 = R.call_tir(cls.minimum5, (lv201,), out_sinfo=R.Tensor((1, 480, 16, 12), dtype="float32"))
            lv203: R.Tensor((1, 480, 16, 12), dtype="float32") = R.divide(lv202, R.const(6.0, "float32"))
            lv204: R.Tensor((1, 480, 16, 12), dtype="float32") = R.multiply(lv199, lv203)
            lv205: R.Tensor((1, 480, 1, 1), dtype="float32") = R.mean(lv204, axis=[2, 3], keepdims=True)
            lv206: R.Tensor((1, 120, 1, 1), dtype="float32") = R.nn.conv2d(lv205, metadata["relax.expr.Constant"][76], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv207: R.Tensor((1, 120, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][77], R.shape([1, 120, 1, 1]))
            lv208: R.Tensor((1, 120, 1, 1), dtype="float32") = R.add(lv206, lv207)
            lv209: R.Tensor((1, 120, 1, 1), dtype="float32") = R.nn.relu(lv208)
            lv210: R.Tensor((1, 480, 1, 1), dtype="float32") = R.nn.conv2d(lv209, metadata["relax.expr.Constant"][78], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv211: R.Tensor((1, 480, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][79], R.shape([1, 480, 1, 1]))
            lv212: R.Tensor((1, 480, 1, 1), dtype="float32") = R.add(lv210, lv211)
            lv213: R.Tensor((1, 480, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv212)
            lv214: R.Tensor((1, 480, 1, 1), dtype="float32") = R.add(lv213, R.const(0.5, "float32"))
            lv215: R.Tensor((1, 480, 1, 1), dtype="float32") = R.clip(lv214, R.prim_value(0), R.prim_value(1))
            lv216: R.Tensor((1, 480, 16, 12), dtype="float32") = R.multiply(lv215, lv204)
            lv217: R.Tensor((1, 112, 16, 12), dtype="float32") = R.nn.conv2d(lv216, metadata["relax.expr.Constant"][80], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv218: R.Tensor((1, 112, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][81], R.shape([1, 112, 1, 1]))
            lv219: R.Tensor((1, 112, 16, 12), dtype="float32") = R.add(lv217, lv218)
            lv220: R.Tensor((1, 672, 16, 12), dtype="float32") = R.nn.conv2d(lv219, metadata["relax.expr.Constant"][82], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv221: R.Tensor((1, 672, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][83], R.shape([1, 672, 1, 1]))
            lv222: R.Tensor((1, 672, 16, 12), dtype="float32") = R.add(lv220, lv221)
            lv223: R.Tensor((1, 672, 16, 12), dtype="float32") = R.add(lv222, R.const(3.0, "float32"))
            lv224 = R.call_tir(cls.maximum6, (lv223,), out_sinfo=R.Tensor((1, 672, 16, 12), dtype="float32"))
            lv225 = R.call_tir(cls.minimum6, (lv224,), out_sinfo=R.Tensor((1, 672, 16, 12), dtype="float32"))
            lv226: R.Tensor((1, 672, 16, 12), dtype="float32") = R.divide(lv225, R.const(6.0, "float32"))
            lv227: R.Tensor((1, 672, 16, 12), dtype="float32") = R.multiply(lv222, lv226)
            lv228: R.Tensor((1, 672, 16, 12), dtype="float32") = R.nn.conv2d(lv227, metadata["relax.expr.Constant"][84], strides=[1, 1], padding=[1, 1, 1, 1], dilation=[1, 1], groups=672, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv229: R.Tensor((1, 672, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][85], R.shape([1, 672, 1, 1]))
            lv230: R.Tensor((1, 672, 16, 12), dtype="float32") = R.add(lv228, lv229)
            lv231: R.Tensor((1, 672, 16, 12), dtype="float32") = R.add(lv230, R.const(3.0, "float32"))
            lv232 = R.call_tir(cls.maximum6, (lv231,), out_sinfo=R.Tensor((1, 672, 16, 12), dtype="float32"))
            lv233 = R.call_tir(cls.minimum6, (lv232,), out_sinfo=R.Tensor((1, 672, 16, 12), dtype="float32"))
            lv234: R.Tensor((1, 672, 16, 12), dtype="float32") = R.divide(lv233, R.const(6.0, "float32"))
            lv235: R.Tensor((1, 672, 16, 12), dtype="float32") = R.multiply(lv230, lv234)
            lv236: R.Tensor((1, 672, 1, 1), dtype="float32") = R.mean(lv235, axis=[2, 3], keepdims=True)
            lv237: R.Tensor((1, 168, 1, 1), dtype="float32") = R.nn.conv2d(lv236, metadata["relax.expr.Constant"][86], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv238: R.Tensor((1, 168, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][87], R.shape([1, 168, 1, 1]))
            lv239: R.Tensor((1, 168, 1, 1), dtype="float32") = R.add(lv237, lv238)
            lv240: R.Tensor((1, 168, 1, 1), dtype="float32") = R.nn.relu(lv239)
            lv241: R.Tensor((1, 672, 1, 1), dtype="float32") = R.nn.conv2d(lv240, metadata["relax.expr.Constant"][88], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv242: R.Tensor((1, 672, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][89], R.shape([1, 672, 1, 1]))
            lv243: R.Tensor((1, 672, 1, 1), dtype="float32") = R.add(lv241, lv242)
            lv244: R.Tensor((1, 672, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv243)
            lv245: R.Tensor((1, 672, 1, 1), dtype="float32") = R.add(lv244, R.const(0.5, "float32"))
            lv246: R.Tensor((1, 672, 1, 1), dtype="float32") = R.clip(lv245, R.prim_value(0), R.prim_value(1))
            lv247: R.Tensor((1, 672, 16, 12), dtype="float32") = R.multiply(lv246, lv235)
            lv248: R.Tensor((1, 112, 16, 12), dtype="float32") = R.nn.conv2d(lv247, metadata["relax.expr.Constant"][90], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv249: R.Tensor((1, 112, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][91], R.shape([1, 112, 1, 1]))
            lv250: R.Tensor((1, 112, 16, 12), dtype="float32") = R.add(lv248, lv249)
            lv251: R.Tensor((1, 112, 16, 12), dtype="float32") = R.add(lv250, lv219)
            lv252: R.Tensor((1, 672, 16, 12), dtype="float32") = R.nn.conv2d(lv251, metadata["relax.expr.Constant"][92], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv253: R.Tensor((1, 672, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][93], R.shape([1, 672, 1, 1]))
            lv254: R.Tensor((1, 672, 16, 12), dtype="float32") = R.add(lv252, lv253)
            lv255: R.Tensor((1, 672, 16, 12), dtype="float32") = R.add(lv254, R.const(3.0, "float32"))
            lv256 = R.call_tir(cls.maximum6, (lv255,), out_sinfo=R.Tensor((1, 672, 16, 12), dtype="float32"))
            lv257 = R.call_tir(cls.minimum6, (lv256,), out_sinfo=R.Tensor((1, 672, 16, 12), dtype="float32"))
            lv258: R.Tensor((1, 672, 16, 12), dtype="float32") = R.divide(lv257, R.const(6.0, "float32"))
            lv259: R.Tensor((1, 672, 16, 12), dtype="float32") = R.multiply(lv254, lv258)
            lv260: R.Tensor((1, 672, 8, 6), dtype="float32") = R.nn.conv2d(lv259, metadata["relax.expr.Constant"][94], strides=[2, 2], padding=[2, 2, 2, 2], dilation=[1, 1], groups=672, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv261: R.Tensor((1, 672, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][95], R.shape([1, 672, 1, 1]))
            lv262: R.Tensor((1, 672, 8, 6), dtype="float32") = R.add(lv260, lv261)
            lv263: R.Tensor((1, 672, 8, 6), dtype="float32") = R.add(lv262, R.const(3.0, "float32"))
            lv264 = R.call_tir(cls.maximum7, (lv263,), out_sinfo=R.Tensor((1, 672, 8, 6), dtype="float32"))
            lv265 = R.call_tir(cls.minimum7, (lv264,), out_sinfo=R.Tensor((1, 672, 8, 6), dtype="float32"))
            lv266: R.Tensor((1, 672, 8, 6), dtype="float32") = R.divide(lv265, R.const(6.0, "float32"))
            lv267: R.Tensor((1, 672, 8, 6), dtype="float32") = R.multiply(lv262, lv266)
            lv268: R.Tensor((1, 672, 1, 1), dtype="float32") = R.mean(lv267, axis=[2, 3], keepdims=True)
            lv269: R.Tensor((1, 168, 1, 1), dtype="float32") = R.nn.conv2d(lv268, metadata["relax.expr.Constant"][96], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv270: R.Tensor((1, 168, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][97], R.shape([1, 168, 1, 1]))
            lv271: R.Tensor((1, 168, 1, 1), dtype="float32") = R.add(lv269, lv270)
            lv272: R.Tensor((1, 168, 1, 1), dtype="float32") = R.nn.relu(lv271)
            lv273: R.Tensor((1, 672, 1, 1), dtype="float32") = R.nn.conv2d(lv272, metadata["relax.expr.Constant"][98], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv274: R.Tensor((1, 672, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][99], R.shape([1, 672, 1, 1]))
            lv275: R.Tensor((1, 672, 1, 1), dtype="float32") = R.add(lv273, lv274)
            lv276: R.Tensor((1, 672, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv275)
            lv277: R.Tensor((1, 672, 1, 1), dtype="float32") = R.add(lv276, R.const(0.5, "float32"))
            lv278: R.Tensor((1, 672, 1, 1), dtype="float32") = R.clip(lv277, R.prim_value(0), R.prim_value(1))
            lv279: R.Tensor((1, 672, 8, 6), dtype="float32") = R.multiply(lv278, lv267)
            lv280: R.Tensor((1, 160, 8, 6), dtype="float32") = R.nn.conv2d(lv279, metadata["relax.expr.Constant"][100], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv281: R.Tensor((1, 160, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][101], R.shape([1, 160, 1, 1]))
            lv282: R.Tensor((1, 160, 8, 6), dtype="float32") = R.add(lv280, lv281)
            lv283: R.Tensor((1, 960, 8, 6), dtype="float32") = R.nn.conv2d(lv282, metadata["relax.expr.Constant"][102], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv284: R.Tensor((1, 960, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][103], R.shape([1, 960, 1, 1]))
            lv285: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv283, lv284)
            lv286: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv285, R.const(3.0, "float32"))
            lv287 = R.call_tir(cls.maximum8, (lv286,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv288 = R.call_tir(cls.minimum8, (lv287,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv289: R.Tensor((1, 960, 8, 6), dtype="float32") = R.divide(lv288, R.const(6.0, "float32"))
            lv290: R.Tensor((1, 960, 8, 6), dtype="float32") = R.multiply(lv285, lv289)
            lv291: R.Tensor((1, 960, 8, 6), dtype="float32") = R.nn.conv2d(lv290, metadata["relax.expr.Constant"][104], strides=[1, 1], padding=[2, 2, 2, 2], dilation=[1, 1], groups=960, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv292: R.Tensor((1, 960, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][105], R.shape([1, 960, 1, 1]))
            lv293: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv291, lv292)
            lv294: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv293, R.const(3.0, "float32"))
            lv295 = R.call_tir(cls.maximum8, (lv294,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv296 = R.call_tir(cls.minimum8, (lv295,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv297: R.Tensor((1, 960, 8, 6), dtype="float32") = R.divide(lv296, R.const(6.0, "float32"))
            lv298: R.Tensor((1, 960, 8, 6), dtype="float32") = R.multiply(lv293, lv297)
            lv299: R.Tensor((1, 960, 1, 1), dtype="float32") = R.mean(lv298, axis=[2, 3], keepdims=True)
            lv300: R.Tensor((1, 240, 1, 1), dtype="float32") = R.nn.conv2d(lv299, metadata["relax.expr.Constant"][106], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv301: R.Tensor((1, 240, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][107], R.shape([1, 240, 1, 1]))
            lv302: R.Tensor((1, 240, 1, 1), dtype="float32") = R.add(lv300, lv301)
            lv303: R.Tensor((1, 240, 1, 1), dtype="float32") = R.nn.relu(lv302)
            lv304: R.Tensor((1, 960, 1, 1), dtype="float32") = R.nn.conv2d(lv303, metadata["relax.expr.Constant"][108], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv305: R.Tensor((1, 960, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][109], R.shape([1, 960, 1, 1]))
            lv306: R.Tensor((1, 960, 1, 1), dtype="float32") = R.add(lv304, lv305)
            lv307: R.Tensor((1, 960, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv306)
            lv308: R.Tensor((1, 960, 1, 1), dtype="float32") = R.add(lv307, R.const(0.5, "float32"))
            lv309: R.Tensor((1, 960, 1, 1), dtype="float32") = R.clip(lv308, R.prim_value(0), R.prim_value(1))
            lv310: R.Tensor((1, 960, 8, 6), dtype="float32") = R.multiply(lv309, lv298)
            lv311: R.Tensor((1, 160, 8, 6), dtype="float32") = R.nn.conv2d(lv310, metadata["relax.expr.Constant"][110], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv312: R.Tensor((1, 160, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][111], R.shape([1, 160, 1, 1]))
            lv313: R.Tensor((1, 160, 8, 6), dtype="float32") = R.add(lv311, lv312)
            lv314: R.Tensor((1, 160, 8, 6), dtype="float32") = R.add(lv313, lv282)
            lv315: R.Tensor((1, 960, 8, 6), dtype="float32") = R.nn.conv2d(lv314, metadata["relax.expr.Constant"][112], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv316: R.Tensor((1, 960, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][113], R.shape([1, 960, 1, 1]))
            lv317: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv315, lv316)
            lv318: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv317, R.const(3.0, "float32"))
            lv319 = R.call_tir(cls.maximum8, (lv318,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv320 = R.call_tir(cls.minimum8, (lv319,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv321: R.Tensor((1, 960, 8, 6), dtype="float32") = R.divide(lv320, R.const(6.0, "float32"))
            lv322: R.Tensor((1, 960, 8, 6), dtype="float32") = R.multiply(lv317, lv321)
            lv323: R.Tensor((1, 960, 8, 6), dtype="float32") = R.nn.conv2d(lv322, metadata["relax.expr.Constant"][114], strides=[1, 1], padding=[2, 2, 2, 2], dilation=[1, 1], groups=960, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv324: R.Tensor((1, 960, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][115], R.shape([1, 960, 1, 1]))
            lv325: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv323, lv324)
            lv326: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv325, R.const(3.0, "float32"))
            lv327 = R.call_tir(cls.maximum8, (lv326,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv328 = R.call_tir(cls.minimum8, (lv327,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv329: R.Tensor((1, 960, 8, 6), dtype="float32") = R.divide(lv328, R.const(6.0, "float32"))
            lv330: R.Tensor((1, 960, 8, 6), dtype="float32") = R.multiply(lv325, lv329)
            lv331: R.Tensor((1, 960, 1, 1), dtype="float32") = R.mean(lv330, axis=[2, 3], keepdims=True)
            lv332: R.Tensor((1, 240, 1, 1), dtype="float32") = R.nn.conv2d(lv331, metadata["relax.expr.Constant"][116], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv333: R.Tensor((1, 240, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][117], R.shape([1, 240, 1, 1]))
            lv334: R.Tensor((1, 240, 1, 1), dtype="float32") = R.add(lv332, lv333)
            lv335: R.Tensor((1, 240, 1, 1), dtype="float32") = R.nn.relu(lv334)
            lv336: R.Tensor((1, 960, 1, 1), dtype="float32") = R.nn.conv2d(lv335, metadata["relax.expr.Constant"][118], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv337: R.Tensor((1, 960, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][119], R.shape([1, 960, 1, 1]))
            lv338: R.Tensor((1, 960, 1, 1), dtype="float32") = R.add(lv336, lv337)
            lv339: R.Tensor((1, 960, 1, 1), dtype="float32") = R.multiply(R.const(0.1666666716337204, "float32"), lv338)
            lv340: R.Tensor((1, 960, 1, 1), dtype="float32") = R.add(lv339, R.const(0.5, "float32"))
            lv341: R.Tensor((1, 960, 1, 1), dtype="float32") = R.clip(lv340, R.prim_value(0), R.prim_value(1))
            lv342: R.Tensor((1, 960, 8, 6), dtype="float32") = R.multiply(lv341, lv330)
            lv343: R.Tensor((1, 160, 8, 6), dtype="float32") = R.nn.conv2d(lv342, metadata["relax.expr.Constant"][120], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv344: R.Tensor((1, 160, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][121], R.shape([1, 160, 1, 1]))
            lv345: R.Tensor((1, 160, 8, 6), dtype="float32") = R.add(lv343, lv344)
            lv346: R.Tensor((1, 160, 8, 6), dtype="float32") = R.add(lv345, lv314)
            lv347: R.Tensor((1, 960, 8, 6), dtype="float32") = R.nn.conv2d(lv346, metadata["relax.expr.Constant"][122], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv348: R.Tensor((1, 960, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][123], R.shape([1, 960, 1, 1]))
            lv349: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv347, lv348)
            lv350: R.Tensor((1, 960, 8, 6), dtype="float32") = R.add(lv349, R.const(3.0, "float32"))
            lv351 = R.call_tir(cls.maximum8, (lv350,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv352 = R.call_tir(cls.minimum8, (lv351,), out_sinfo=R.Tensor((1, 960, 8, 6), dtype="float32"))
            lv353: R.Tensor((1, 960, 8, 6), dtype="float32") = R.divide(lv352, R.const(6.0, "float32"))
            lv354: R.Tensor((1, 960, 8, 6), dtype="float32") = R.multiply(lv349, lv353)
            lv355: R.Tensor((1, 1280, 8, 6), dtype="float32") = R.nn.conv2d(lv354, metadata["relax.expr.Constant"][124], strides=[1, 1], padding=[0, 0, 0, 0], dilation=[1, 1], groups=1, data_layout="NCHW", kernel_layout="OIHW", out_layout="NCHW", out_dtype="void")
            lv356: R.Tensor((1, 1280, 1, 1), dtype="float32") = R.reshape(metadata["relax.expr.Constant"][125], R.shape([1, 1280, 1, 1]))
            lv357: R.Tensor((1, 1280, 8, 6), dtype="float32") = R.add(lv355, lv356)
            lv358 = R.call_tir(cls.maximum9, (lv357,), out_sinfo=R.Tensor((1, 1280, 8, 6), dtype="float32"))
            lv359 = R.call_tir(cls.minimum9, (lv358,), out_sinfo=R.Tensor((1, 1280, 8, 6), dtype="float32"))
            lv360: R.Tensor((1, 1280, 48), dtype="float32") = R.reshape(lv359, R.shape([1, 1280, 48]))
            lv361: R.Tensor((1, 1280), dtype="float32") = R.mean(lv360, axis=[-1], keepdims=False)
            lv362: R.Tensor((1, 1280, 1, 1), dtype="float32") = R.reshape(lv361, R.shape([1, 1280, 1, 1]))
            lv363: R.Tuple(R.Tensor((1, 1280, 1, 1), dtype="float32"), R.Tensor((1280,), dtype="float32"), R.Tensor((1280,), dtype="float32")) = R.nn.batch_norm(lv362, metadata["relax.expr.Constant"][126], metadata["relax.expr.Constant"][127], metadata["relax.expr.Constant"][128], metadata["relax.expr.Constant"][129], axis=1, epsilon=9.9999997473787516e-06, center=True, scale=True, momentum=0.10000000000000001)
            lv364: R.Tensor((1, 1280, 1, 1), dtype="float32") = lv363[0]
            lv365: R.Tensor((1280,), dtype="float32") = lv363[1]
            lv366: R.Tensor((1280,), dtype="float32") = lv363[2]
            lv367: R.Tensor((1, 1280), dtype="float32") = R.reshape(lv364, R.shape([1, 1280]))
            lv368: R.Tensor((1, 9), dtype="float32") = R.matmul(lv367, metadata["relax.expr.Constant"][130], out_dtype="void")
            lv369: R.Tuple(R.Tensor((1, 9), dtype="float32"), R.Tensor((9,), dtype="float32"), R.Tensor((9,), dtype="float32")) = R.nn.batch_norm(lv368, metadata["relax.expr.Constant"][131], metadata["relax.expr.Constant"][132], metadata["relax.expr.Constant"][133], metadata["relax.expr.Constant"][134], axis=1, epsilon=9.9999997473787516e-06, center=True, scale=True, momentum=0.10000000000000001)
            lv370: R.Tensor((1, 9), dtype="float32") = lv369[0]
            lv371: R.Tensor((9,), dtype="float32") = lv369[1]
            lv372: R.Tensor((9,), dtype="float32") = lv369[2]
            gv: R.Tensor((1, 9), dtype="float32") = lv370
            R.output(gv)
        return gv

# Metadata omitted. Use show_meta=True in script() method to show it.