# from tvm.script import ir as I
# from tvm.script import relax as R
@I . ir_module
class Module :
@R . function
def main (inp_0: R. Tensor((1 , 3 , 224 , 224 ), dtype= "float32" )) -> R. Tensor((1 , 1000 ), dtype= "float32" ):
with R. dataflow():
lv: R. Tensor((1 , 64 , 112 , 112 ), dtype= "float32" ) = R. nn. conv2d(inp_0, metadata["relax.expr.Constant" ][0 ], strides= [2 , 2 ], padding= [3 , 3 , 3 , 3 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv1: R. Tuple(R. Tensor((1 , 64 , 112 , 112 ), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" )) = R. nn. batch_norm(lv, metadata["relax.expr.Constant" ][1 ], metadata["relax.expr.Constant" ][2 ], metadata["relax.expr.Constant" ][3 ], metadata["relax.expr.Constant" ][4 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv2: R. Tensor((1 , 64 , 112 , 112 ), dtype= "float32" ) = lv1[0 ]
lv3: R. Tensor((1 , 64 , 112 , 112 ), dtype= "float32" ) = R. nn. relu(lv2)
lv4: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. max_pool2d(lv3, pool_size= [3 , 3 ], strides= [2 , 2 ], dilation= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], ceil_mode= False , count_include_pad= False , layout= "NCHW" , out_layout= "NCHW" )
lv5: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. conv2d(lv4, metadata["relax.expr.Constant" ][5 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv6: R. Tuple(R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" )) = R. nn. batch_norm(lv5, metadata["relax.expr.Constant" ][6 ], metadata["relax.expr.Constant" ][7 ], metadata["relax.expr.Constant" ][8 ], metadata["relax.expr.Constant" ][9 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv7: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = lv6[0 ]
lv8: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. relu(lv7)
lv9: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. conv2d(lv8, metadata["relax.expr.Constant" ][10 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv10: R. Tuple(R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" )) = R. nn. batch_norm(lv9, metadata["relax.expr.Constant" ][11 ], metadata["relax.expr.Constant" ][12 ], metadata["relax.expr.Constant" ][13 ], metadata["relax.expr.Constant" ][14 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv11: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = lv10[0 ]
lv12: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. add(lv11, lv4)
lv13: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. relu(lv12)
lv14: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. conv2d(lv13, metadata["relax.expr.Constant" ][15 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv15: R. Tuple(R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" )) = R. nn. batch_norm(lv14, metadata["relax.expr.Constant" ][16 ], metadata["relax.expr.Constant" ][17 ], metadata["relax.expr.Constant" ][18 ], metadata["relax.expr.Constant" ][19 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv16: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = lv15[0 ]
lv17: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. relu(lv16)
lv18: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. conv2d(lv17, metadata["relax.expr.Constant" ][20 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv19: R. Tuple(R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" ), R. Tensor((64 ,), dtype= "float32" )) = R. nn. batch_norm(lv18, metadata["relax.expr.Constant" ][21 ], metadata["relax.expr.Constant" ][22 ], metadata["relax.expr.Constant" ][23 ], metadata["relax.expr.Constant" ][24 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv20: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = lv19[0 ]
lv21: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. add(lv20, lv13)
lv22: R. Tensor((1 , 64 , 56 , 56 ), dtype= "float32" ) = R. nn. relu(lv21)
lv23: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. conv2d(lv22, metadata["relax.expr.Constant" ][25 ], strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv24: R. Tuple(R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" )) = R. nn. batch_norm(lv23, metadata["relax.expr.Constant" ][26 ], metadata["relax.expr.Constant" ][27 ], metadata["relax.expr.Constant" ][28 ], metadata["relax.expr.Constant" ][29 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv25: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = lv24[0 ]
lv26: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. relu(lv25)
lv27: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. conv2d(lv26, metadata["relax.expr.Constant" ][30 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv28: R. Tuple(R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" )) = R. nn. batch_norm(lv27, metadata["relax.expr.Constant" ][31 ], metadata["relax.expr.Constant" ][32 ], metadata["relax.expr.Constant" ][33 ], metadata["relax.expr.Constant" ][34 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv29: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = lv28[0 ]
lv30: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. conv2d(lv22, metadata["relax.expr.Constant" ][35 ], strides= [2 , 2 ], padding= [0 , 0 , 0 , 0 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv31: R. Tuple(R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" )) = R. nn. batch_norm(lv30, metadata["relax.expr.Constant" ][36 ], metadata["relax.expr.Constant" ][37 ], metadata["relax.expr.Constant" ][38 ], metadata["relax.expr.Constant" ][39 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv32: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = lv31[0 ]
lv33: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. add(lv29, lv32)
lv34: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. relu(lv33)
lv35: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. conv2d(lv34, metadata["relax.expr.Constant" ][40 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv36: R. Tuple(R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" )) = R. nn. batch_norm(lv35, metadata["relax.expr.Constant" ][41 ], metadata["relax.expr.Constant" ][42 ], metadata["relax.expr.Constant" ][43 ], metadata["relax.expr.Constant" ][44 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv37: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = lv36[0 ]
lv38: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. relu(lv37)
lv39: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. conv2d(lv38, metadata["relax.expr.Constant" ][45 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv40: R. Tuple(R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" ), R. Tensor((128 ,), dtype= "float32" )) = R. nn. batch_norm(lv39, metadata["relax.expr.Constant" ][46 ], metadata["relax.expr.Constant" ][47 ], metadata["relax.expr.Constant" ][48 ], metadata["relax.expr.Constant" ][49 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv41: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = lv40[0 ]
lv42: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. add(lv41, lv34)
lv43: R. Tensor((1 , 128 , 28 , 28 ), dtype= "float32" ) = R. nn. relu(lv42)
lv44: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. conv2d(lv43, metadata["relax.expr.Constant" ][50 ], strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv45: R. Tuple(R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" )) = R. nn. batch_norm(lv44, metadata["relax.expr.Constant" ][51 ], metadata["relax.expr.Constant" ][52 ], metadata["relax.expr.Constant" ][53 ], metadata["relax.expr.Constant" ][54 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv46: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = lv45[0 ]
lv47: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. relu(lv46)
lv48: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. conv2d(lv47, metadata["relax.expr.Constant" ][55 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv49: R. Tuple(R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" )) = R. nn. batch_norm(lv48, metadata["relax.expr.Constant" ][56 ], metadata["relax.expr.Constant" ][57 ], metadata["relax.expr.Constant" ][58 ], metadata["relax.expr.Constant" ][59 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv50: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = lv49[0 ]
lv51: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. conv2d(lv43, metadata["relax.expr.Constant" ][60 ], strides= [2 , 2 ], padding= [0 , 0 , 0 , 0 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv52: R. Tuple(R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" )) = R. nn. batch_norm(lv51, metadata["relax.expr.Constant" ][61 ], metadata["relax.expr.Constant" ][62 ], metadata["relax.expr.Constant" ][63 ], metadata["relax.expr.Constant" ][64 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv53: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = lv52[0 ]
lv54: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. add(lv50, lv53)
lv55: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. relu(lv54)
lv56: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. conv2d(lv55, metadata["relax.expr.Constant" ][65 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv57: R. Tuple(R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" )) = R. nn. batch_norm(lv56, metadata["relax.expr.Constant" ][66 ], metadata["relax.expr.Constant" ][67 ], metadata["relax.expr.Constant" ][68 ], metadata["relax.expr.Constant" ][69 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv58: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = lv57[0 ]
lv59: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. relu(lv58)
lv60: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. conv2d(lv59, metadata["relax.expr.Constant" ][70 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv61: R. Tuple(R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" ), R. Tensor((256 ,), dtype= "float32" )) = R. nn. batch_norm(lv60, metadata["relax.expr.Constant" ][71 ], metadata["relax.expr.Constant" ][72 ], metadata["relax.expr.Constant" ][73 ], metadata["relax.expr.Constant" ][74 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv62: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = lv61[0 ]
lv63: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. add(lv62, lv55)
lv64: R. Tensor((1 , 256 , 14 , 14 ), dtype= "float32" ) = R. nn. relu(lv63)
lv65: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. conv2d(lv64, metadata["relax.expr.Constant" ][75 ], strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv66: R. Tuple(R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" )) = R. nn. batch_norm(lv65, metadata["relax.expr.Constant" ][76 ], metadata["relax.expr.Constant" ][77 ], metadata["relax.expr.Constant" ][78 ], metadata["relax.expr.Constant" ][79 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv67: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = lv66[0 ]
lv68: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. relu(lv67)
lv69: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. conv2d(lv68, metadata["relax.expr.Constant" ][80 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv70: R. Tuple(R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" )) = R. nn. batch_norm(lv69, metadata["relax.expr.Constant" ][81 ], metadata["relax.expr.Constant" ][82 ], metadata["relax.expr.Constant" ][83 ], metadata["relax.expr.Constant" ][84 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv71: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = lv70[0 ]
lv72: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. conv2d(lv64, metadata["relax.expr.Constant" ][85 ], strides= [2 , 2 ], padding= [0 , 0 , 0 , 0 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv73: R. Tuple(R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" )) = R. nn. batch_norm(lv72, metadata["relax.expr.Constant" ][86 ], metadata["relax.expr.Constant" ][87 ], metadata["relax.expr.Constant" ][88 ], metadata["relax.expr.Constant" ][89 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv74: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = lv73[0 ]
lv75: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. add(lv71, lv74)
lv76: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. relu(lv75)
lv77: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. conv2d(lv76, metadata["relax.expr.Constant" ][90 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv78: R. Tuple(R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" )) = R. nn. batch_norm(lv77, metadata["relax.expr.Constant" ][91 ], metadata["relax.expr.Constant" ][92 ], metadata["relax.expr.Constant" ][93 ], metadata["relax.expr.Constant" ][94 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv79: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = lv78[0 ]
lv80: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. relu(lv79)
lv81: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. conv2d(lv80, metadata["relax.expr.Constant" ][95 ], strides= [1 , 1 ], padding= [1 , 1 , 1 , 1 ], dilation= [1 , 1 ], groups= 1 , data_layout= "NCHW" , kernel_layout= "OIHW" , out_layout= "NCHW" , out_dtype= "float32" )
lv82: R. Tuple(R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" ), R. Tensor((512 ,), dtype= "float32" )) = R. nn. batch_norm(lv81, metadata["relax.expr.Constant" ][96 ], metadata["relax.expr.Constant" ][97 ], metadata["relax.expr.Constant" ][98 ], metadata["relax.expr.Constant" ][99 ], axis= 1 , epsilon= 1.0000000000000001e-05 , center= True , scale= True , momentum= 0.10000000000000001 )
lv83: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = lv82[0 ]
lv84: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. add(lv83, lv76)
lv85: R. Tensor((1 , 512 , 7 , 7 ), dtype= "float32" ) = R. nn. relu(lv84)
lv86: R. Tensor((1 , 512 , 1 , 1 ), dtype= "float32" ) = R. nn. adaptive_avg_pool2d(lv85, output_size= [1 , 1 ], layout= "NCHW" , out_layout= "NCHW" )
lv87: R. Tensor((1 , 512 ), dtype= "float32" ) = R. reshape(lv86, R. shape([1 , 512 ]))
lv89: R. Tensor((1 , 1000 ), dtype= "float32" ) = R. matmul(lv87, metadata["relax.expr.Constant" ][100 ], out_dtype= "float32" )
lv90: R. Tensor((1 , 1000 ), dtype= "float32" ) = R. add(lv89, metadata["relax.expr.Constant" ][101 ])
gv: R. Tensor((1 , 1000 ), dtype= "float32" ) = lv90
R. output(gv)
return gv
# Metadata omitted. Use show_meta=True in script() method to show it.
复制到剪贴板