测试 ONNX relay 模型

测试 ONNX relay 模型#

import set_env
import onnx
from tvm import relay

# path = 
onnx_model = onnx.load(path)
mod, params = relay.frontend.from_onnx(onnx_model)#shape_dict, freeze_params=True)
mod.show()
def @main(%input.1: Tensor[(1, 3, 384, 640), float32] /* ty=Tensor[(1, 3, 384, 640), float32] span=Conv_0.input.1:0:0 */) -> (Tensor[(1, 27, 48, 80), float32], Tensor[(1, 27, 24, 40), float32], Tensor[(1, 27, 12, 20), float32]) {
  %0 = nn.conv2d(%input.1, meta[relay.Constant][0] /* ty=Tensor[(16, 3, 3, 3), float32] span=Conv_0.model.0.conv.weight:0:0 */, strides=[2, 2], padding=[1, 1, 1, 1], channels=16, kernel_size=[3, 3]) /* ty=Tensor[(1, 16, 192, 320), float32] span=Conv_0:0:0 */;
  %1 = nn.bias_add(%0, meta[relay.Constant][1] /* ty=Tensor[(16), float32] span=Conv_0.model.0.conv.bias:0:0 */) /* ty=Tensor[(1, 16, 192, 320), float32] span=Conv_0:0:0 */;
  %2 = broadcast_to_like(meta[relay.Constant][2] /* ty=Tensor[(16, 1, 1), float32] span=PRelu_1.410:0:0 */, %1) /* ty=Tensor[(1, 16, 192, 320), float32] span=PRelu_1:0:0 */;
  %3 = reshape(%1, newshape=[-1]) /* ty=Tensor[(983040), float32] span=PRelu_1:0:0 */;
  %4 = reshape(%2, newshape=[-1]) /* ty=Tensor[(983040), float32] span=PRelu_1:0:0 */;
  %5 = nn.prelu(%3, %4, axis=0) /* ty=Tensor[(983040), float32] span=PRelu_1:0:0 */;
  %6 = reshape(%5, newshape=[1, 16, 192, 320]) /* ty=Tensor[(1, 16, 192, 320), float32] span=PRelu_1:0:0 */;
  %7 = nn.conv2d(%6, meta[relay.Constant][3] /* ty=Tensor[(32, 16, 3, 3), float32] span=Conv_2.model.1.conv.weight:0:0 */, strides=[2, 2], padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3]) /* ty=Tensor[(1, 32, 96, 160), float32] span=Conv_2:0:0 */;
  %8 = nn.bias_add(%7, meta[relay.Constant][4] /* ty=Tensor[(32), float32] span=Conv_2.model.1.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 96, 160), float32] span=Conv_2:0:0 */;
  %9 = broadcast_to_like(meta[relay.Constant][5] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_3.411:0:0 */, %8) /* ty=Tensor[(1, 32, 96, 160), float32] span=PRelu_3:0:0 */;
  %10 = reshape(%8, newshape=[-1]) /* ty=Tensor[(491520), float32] span=PRelu_3:0:0 */;
  %11 = reshape(%9, newshape=[-1]) /* ty=Tensor[(491520), float32] span=PRelu_3:0:0 */;
  %12 = nn.prelu(%10, %11, axis=0) /* ty=Tensor[(491520), float32] span=PRelu_3:0:0 */;
  %13 = reshape(%12, newshape=[1, 32, 96, 160]) /* ty=Tensor[(1, 32, 96, 160), float32] span=PRelu_3:0:0 */;
  %14 = nn.conv2d(%13, meta[relay.Constant][6] /* ty=Tensor[(16, 32, 1, 1), float32] span=Conv_4.model.2.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=16, kernel_size=[1, 1]) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_4:0:0 */;
  %15 = nn.bias_add(%14, meta[relay.Constant][7] /* ty=Tensor[(16), float32] span=Conv_4.model.2.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_4:0:0 */;
  %16 = broadcast_to_like(meta[relay.Constant][8] /* ty=Tensor[(16, 1, 1), float32] span=PRelu_5.412:0:0 */, %15) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_5:0:0 */;
  %17 = reshape(%15, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_5:0:0 */;
  %18 = reshape(%16, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_5:0:0 */;
  %19 = nn.prelu(%17, %18, axis=0) /* ty=Tensor[(245760), float32] span=PRelu_5:0:0 */;
  %20 = reshape(%19, newshape=[1, 16, 96, 160]) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_5:0:0 */;
  %21 = nn.conv2d(%20, meta[relay.Constant][9] /* ty=Tensor[(16, 16, 1, 1), float32] span=Conv_6.model.2.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=16, kernel_size=[1, 1]) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_6:0:0 */;
  %22 = nn.bias_add(%21, meta[relay.Constant][10] /* ty=Tensor[(16), float32] span=Conv_6.model.2.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_6:0:0 */;
  %23 = broadcast_to_like(meta[relay.Constant][11] /* ty=Tensor[(16, 1, 1), float32] span=PRelu_7.413:0:0 */, %22) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_7:0:0 */;
  %24 = reshape(%22, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_7:0:0 */;
  %25 = reshape(%23, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_7:0:0 */;
  %26 = nn.prelu(%24, %25, axis=0) /* ty=Tensor[(245760), float32] span=PRelu_7:0:0 */;
  %27 = reshape(%26, newshape=[1, 16, 96, 160]) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_7:0:0 */;
  %28 = nn.conv2d(%27, meta[relay.Constant][12] /* ty=Tensor[(16, 16, 3, 3), float32] span=Conv_8.model.2.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=16, kernel_size=[3, 3]) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_8:0:0 */;
  %29 = nn.bias_add(%28, meta[relay.Constant][13] /* ty=Tensor[(16), float32] span=Conv_8.model.2.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_8:0:0 */;
  %30 = broadcast_to_like(meta[relay.Constant][14] /* ty=Tensor[(16, 1, 1), float32] span=PRelu_9.414:0:0 */, %29) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_9:0:0 */;
  %31 = reshape(%29, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_9:0:0 */;
  %32 = reshape(%30, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_9:0:0 */;
  %33 = nn.prelu(%31, %32, axis=0) /* ty=Tensor[(245760), float32] span=PRelu_9:0:0 */;
  %34 = reshape(%33, newshape=[1, 16, 96, 160]) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_9:0:0 */;
  %35 = nn.conv2d(%13, meta[relay.Constant][15] /* ty=Tensor[(16, 32, 1, 1), float32] span=Conv_11.model.2.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=16, kernel_size=[1, 1]) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_11:0:0 */;
  %36 = nn.bias_add(%35, meta[relay.Constant][16] /* ty=Tensor[(16), float32] span=Conv_11.model.2.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 16, 96, 160), float32] span=Conv_11:0:0 */;
  %37 = broadcast_to_like(meta[relay.Constant][17] /* ty=Tensor[(16, 1, 1), float32] span=PRelu_12.415:0:0 */, %36) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_12:0:0 */;
  %38 = reshape(%36, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_12:0:0 */;
  %39 = reshape(%37, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_12:0:0 */;
  %40 = nn.prelu(%38, %39, axis=0) /* ty=Tensor[(245760), float32] span=PRelu_12:0:0 */;
  %41 = add(%20, %34) /* ty=Tensor[(1, 16, 96, 160), float32] span=Add_10:0:0 */;
  %42 = reshape(%40, newshape=[1, 16, 96, 160]) /* ty=Tensor[(1, 16, 96, 160), float32] span=PRelu_12:0:0 */;
  %43 = (%41, %42) /* ty=(Tensor[(1, 16, 96, 160), float32], Tensor[(1, 16, 96, 160), float32]) span=Concat_13:0:0 */;
  %44 = concatenate(%43, axis=1) /* ty=Tensor[(1, 32, 96, 160), float32] span=Concat_13:0:0 */;
  %45 = nn.conv2d(%44, meta[relay.Constant][18] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_14.model.2.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 96, 160), float32] span=Conv_14:0:0 */;
  %46 = nn.bias_add(%45, meta[relay.Constant][19] /* ty=Tensor[(32), float32] span=Conv_14.model.2.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 96, 160), float32] span=Conv_14:0:0 */;
  %47 = broadcast_to_like(meta[relay.Constant][20] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_15.416:0:0 */, %46) /* ty=Tensor[(1, 32, 96, 160), float32] span=PRelu_15:0:0 */;
  %48 = reshape(%46, newshape=[-1]) /* ty=Tensor[(491520), float32] span=PRelu_15:0:0 */;
  %49 = reshape(%47, newshape=[-1]) /* ty=Tensor[(491520), float32] span=PRelu_15:0:0 */;
  %50 = nn.prelu(%48, %49, axis=0) /* ty=Tensor[(491520), float32] span=PRelu_15:0:0 */;
  %51 = reshape(%50, newshape=[1, 32, 96, 160]) /* ty=Tensor[(1, 32, 96, 160), float32] span=PRelu_15:0:0 */;
  %52 = nn.conv2d(%51, meta[relay.Constant][21] /* ty=Tensor[(64, 32, 3, 3), float32] span=Conv_16.model.3.conv.weight:0:0 */, strides=[2, 2], padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 48, 80), float32] span=Conv_16:0:0 */;
  %53 = nn.bias_add(%52, meta[relay.Constant][22] /* ty=Tensor[(64), float32] span=Conv_16.model.3.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 48, 80), float32] span=Conv_16:0:0 */;
  %54 = broadcast_to_like(meta[relay.Constant][23] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_17.417:0:0 */, %53) /* ty=Tensor[(1, 64, 48, 80), float32] span=PRelu_17:0:0 */;
  %55 = reshape(%53, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_17:0:0 */;
  %56 = reshape(%54, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_17:0:0 */;
  %57 = nn.prelu(%55, %56, axis=0) /* ty=Tensor[(245760), float32] span=PRelu_17:0:0 */;
  %58 = reshape(%57, newshape=[1, 64, 48, 80]) /* ty=Tensor[(1, 64, 48, 80), float32] span=PRelu_17:0:0 */;
  %59 = nn.conv2d(%58, meta[relay.Constant][24] /* ty=Tensor[(32, 64, 1, 1), float32] span=Conv_18.model.4.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_18:0:0 */;
  %60 = nn.bias_add(%59, meta[relay.Constant][25] /* ty=Tensor[(32), float32] span=Conv_18.model.4.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_18:0:0 */;
  %61 = broadcast_to_like(meta[relay.Constant][26] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_19.418:0:0 */, %60) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_19:0:0 */;
  %62 = reshape(%60, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_19:0:0 */;
  %63 = reshape(%61, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_19:0:0 */;
  %64 = nn.prelu(%62, %63, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_19:0:0 */;
  %65 = reshape(%64, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_19:0:0 */;
  %66 = nn.conv2d(%65, meta[relay.Constant][27] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_20.model.4.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_20:0:0 */;
  %67 = nn.bias_add(%66, meta[relay.Constant][28] /* ty=Tensor[(32), float32] span=Conv_20.model.4.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_20:0:0 */;
  %68 = broadcast_to_like(meta[relay.Constant][29] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_21.419:0:0 */, %67) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_21:0:0 */;
  %69 = reshape(%67, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_21:0:0 */;
  %70 = reshape(%68, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_21:0:0 */;
  %71 = nn.prelu(%69, %70, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_21:0:0 */;
  %72 = reshape(%71, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_21:0:0 */;
  %73 = nn.conv2d(%72, meta[relay.Constant][30] /* ty=Tensor[(32, 32, 3, 3), float32] span=Conv_22.model.4.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_22:0:0 */;
  %74 = nn.bias_add(%73, meta[relay.Constant][31] /* ty=Tensor[(32), float32] span=Conv_22.model.4.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_22:0:0 */;
  %75 = broadcast_to_like(meta[relay.Constant][32] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_23.420:0:0 */, %74) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_23:0:0 */;
  %76 = reshape(%74, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_23:0:0 */;
  %77 = reshape(%75, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_23:0:0 */;
  %78 = nn.prelu(%76, %77, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_23:0:0 */;
  %79 = reshape(%78, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_23:0:0 */;
  %80 = add(%65, %79) /* ty=Tensor[(1, 32, 48, 80), float32] span=Add_24:0:0 */;
  %81 = nn.conv2d(%80, meta[relay.Constant][33] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_25.model.4.m.1.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_25:0:0 */;
  %82 = nn.bias_add(%81, meta[relay.Constant][34] /* ty=Tensor[(32), float32] span=Conv_25.model.4.m.1.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_25:0:0 */;
  %83 = broadcast_to_like(meta[relay.Constant][35] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_26.421:0:0 */, %82) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_26:0:0 */;
  %84 = reshape(%82, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_26:0:0 */;
  %85 = reshape(%83, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_26:0:0 */;
  %86 = nn.prelu(%84, %85, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_26:0:0 */;
  %87 = reshape(%86, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_26:0:0 */;
  %88 = nn.conv2d(%87, meta[relay.Constant][36] /* ty=Tensor[(32, 32, 3, 3), float32] span=Conv_27.model.4.m.1.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_27:0:0 */;
  %89 = nn.bias_add(%88, meta[relay.Constant][37] /* ty=Tensor[(32), float32] span=Conv_27.model.4.m.1.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_27:0:0 */;
  %90 = broadcast_to_like(meta[relay.Constant][38] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_28.422:0:0 */, %89) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_28:0:0 */;
  %91 = reshape(%89, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_28:0:0 */;
  %92 = reshape(%90, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_28:0:0 */;
  %93 = nn.prelu(%91, %92, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_28:0:0 */;
  %94 = reshape(%93, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_28:0:0 */;
  %95 = nn.conv2d(%58, meta[relay.Constant][39] /* ty=Tensor[(32, 64, 1, 1), float32] span=Conv_30.model.4.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_30:0:0 */;
  %96 = nn.bias_add(%95, meta[relay.Constant][40] /* ty=Tensor[(32), float32] span=Conv_30.model.4.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_30:0:0 */;
  %97 = broadcast_to_like(meta[relay.Constant][41] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_31.423:0:0 */, %96) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_31:0:0 */;
  %98 = reshape(%96, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_31:0:0 */;
  %99 = reshape(%97, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_31:0:0 */;
  %100 = nn.prelu(%98, %99, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_31:0:0 */;
  %101 = add(%80, %94) /* ty=Tensor[(1, 32, 48, 80), float32] span=Add_29:0:0 */;
  %102 = reshape(%100, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_31:0:0 */;
  %103 = (%101, %102) /* ty=(Tensor[(1, 32, 48, 80), float32], Tensor[(1, 32, 48, 80), float32]) span=Concat_32:0:0 */;
  %104 = concatenate(%103, axis=1) /* ty=Tensor[(1, 64, 48, 80), float32] span=Concat_32:0:0 */;
  %105 = nn.conv2d(%104, meta[relay.Constant][42] /* ty=Tensor[(64, 64, 1, 1), float32] span=Conv_33.model.4.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 48, 80), float32] span=Conv_33:0:0 */;
  %106 = nn.bias_add(%105, meta[relay.Constant][43] /* ty=Tensor[(64), float32] span=Conv_33.model.4.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 48, 80), float32] span=Conv_33:0:0 */;
  %107 = broadcast_to_like(meta[relay.Constant][44] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_34.424:0:0 */, %106) /* ty=Tensor[(1, 64, 48, 80), float32] span=PRelu_34:0:0 */;
  %108 = reshape(%106, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_34:0:0 */;
  %109 = reshape(%107, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_34:0:0 */;
  %110 = nn.prelu(%108, %109, axis=0) /* ty=Tensor[(245760), float32] span=PRelu_34:0:0 */;
  %111 = reshape(%110, newshape=[1, 64, 48, 80]) /* ty=Tensor[(1, 64, 48, 80), float32] span=PRelu_34:0:0 */;
  %112 = nn.conv2d(%111, meta[relay.Constant][45] /* ty=Tensor[(86, 64, 3, 3), float32] span=Conv_35.model.5.conv.weight:0:0 */, strides=[2, 2], padding=[1, 1, 1, 1], channels=86, kernel_size=[3, 3]) /* ty=Tensor[(1, 86, 24, 40), float32] span=Conv_35:0:0 */;
  %113 = nn.bias_add(%112, meta[relay.Constant][46] /* ty=Tensor[(86), float32] span=Conv_35.model.5.conv.bias:0:0 */) /* ty=Tensor[(1, 86, 24, 40), float32] span=Conv_35:0:0 */;
  %114 = broadcast_to_like(meta[relay.Constant][47] /* ty=Tensor[(86, 1, 1), float32] span=PRelu_36.425:0:0 */, %113) /* ty=Tensor[(1, 86, 24, 40), float32] span=PRelu_36:0:0 */;
  %115 = reshape(%113, newshape=[-1]) /* ty=Tensor[(82560), float32] span=PRelu_36:0:0 */;
  %116 = reshape(%114, newshape=[-1]) /* ty=Tensor[(82560), float32] span=PRelu_36:0:0 */;
  %117 = nn.prelu(%115, %116, axis=0) /* ty=Tensor[(82560), float32] span=PRelu_36:0:0 */;
  %118 = reshape(%117, newshape=[1, 86, 24, 40]) /* ty=Tensor[(1, 86, 24, 40), float32] span=PRelu_36:0:0 */;
  %119 = nn.conv2d(%118, meta[relay.Constant][48] /* ty=Tensor[(64, 86, 1, 1), float32] span=Conv_37.model.6.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_37:0:0 */;
  %120 = nn.bias_add(%119, meta[relay.Constant][49] /* ty=Tensor[(64), float32] span=Conv_37.model.6.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_37:0:0 */;
  %121 = broadcast_to_like(meta[relay.Constant][50] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_38.426:0:0 */, %120) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_38:0:0 */;
  %122 = reshape(%120, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_38:0:0 */;
  %123 = reshape(%121, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_38:0:0 */;
  %124 = nn.prelu(%122, %123, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_38:0:0 */;
  %125 = reshape(%124, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_38:0:0 */;
  %126 = nn.conv2d(%125, meta[relay.Constant][51] /* ty=Tensor[(64, 64, 1, 1), float32] span=Conv_39.model.6.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_39:0:0 */;
  %127 = nn.bias_add(%126, meta[relay.Constant][52] /* ty=Tensor[(64), float32] span=Conv_39.model.6.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_39:0:0 */;
  %128 = broadcast_to_like(meta[relay.Constant][53] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_40.427:0:0 */, %127) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_40:0:0 */;
  %129 = reshape(%127, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_40:0:0 */;
  %130 = reshape(%128, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_40:0:0 */;
  %131 = nn.prelu(%129, %130, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_40:0:0 */;
  %132 = reshape(%131, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_40:0:0 */;
  %133 = nn.conv2d(%132, meta[relay.Constant][54] /* ty=Tensor[(64, 64, 3, 3), float32] span=Conv_41.model.6.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_41:0:0 */;
  %134 = nn.bias_add(%133, meta[relay.Constant][55] /* ty=Tensor[(64), float32] span=Conv_41.model.6.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_41:0:0 */;
  %135 = broadcast_to_like(meta[relay.Constant][56] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_42.428:0:0 */, %134) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_42:0:0 */;
  %136 = reshape(%134, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_42:0:0 */;
  %137 = reshape(%135, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_42:0:0 */;
  %138 = nn.prelu(%136, %137, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_42:0:0 */;
  %139 = reshape(%138, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_42:0:0 */;
  %140 = add(%125, %139) /* ty=Tensor[(1, 64, 24, 40), float32] span=Add_43:0:0 */;
  %141 = nn.conv2d(%140, meta[relay.Constant][57] /* ty=Tensor[(64, 64, 1, 1), float32] span=Conv_44.model.6.m.1.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_44:0:0 */;
  %142 = nn.bias_add(%141, meta[relay.Constant][58] /* ty=Tensor[(64), float32] span=Conv_44.model.6.m.1.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_44:0:0 */;
  %143 = broadcast_to_like(meta[relay.Constant][59] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_45.429:0:0 */, %142) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_45:0:0 */;
  %144 = reshape(%142, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_45:0:0 */;
  %145 = reshape(%143, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_45:0:0 */;
  %146 = nn.prelu(%144, %145, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_45:0:0 */;
  %147 = reshape(%146, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_45:0:0 */;
  %148 = nn.conv2d(%147, meta[relay.Constant][60] /* ty=Tensor[(64, 64, 3, 3), float32] span=Conv_46.model.6.m.1.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_46:0:0 */;
  %149 = nn.bias_add(%148, meta[relay.Constant][61] /* ty=Tensor[(64), float32] span=Conv_46.model.6.m.1.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_46:0:0 */;
  %150 = broadcast_to_like(meta[relay.Constant][62] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_47.430:0:0 */, %149) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_47:0:0 */;
  %151 = reshape(%149, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_47:0:0 */;
  %152 = reshape(%150, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_47:0:0 */;
  %153 = nn.prelu(%151, %152, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_47:0:0 */;
  %154 = reshape(%153, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_47:0:0 */;
  %155 = add(%140, %154) /* ty=Tensor[(1, 64, 24, 40), float32] span=Add_48:0:0 */;
  %156 = nn.conv2d(%155, meta[relay.Constant][63] /* ty=Tensor[(64, 64, 1, 1), float32] span=Conv_49.model.6.m.2.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_49:0:0 */;
  %157 = nn.bias_add(%156, meta[relay.Constant][64] /* ty=Tensor[(64), float32] span=Conv_49.model.6.m.2.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_49:0:0 */;
  %158 = broadcast_to_like(meta[relay.Constant][65] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_50.431:0:0 */, %157) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_50:0:0 */;
  %159 = reshape(%157, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_50:0:0 */;
  %160 = reshape(%158, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_50:0:0 */;
  %161 = nn.prelu(%159, %160, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_50:0:0 */;
  %162 = reshape(%161, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_50:0:0 */;
  %163 = nn.conv2d(%162, meta[relay.Constant][66] /* ty=Tensor[(64, 64, 3, 3), float32] span=Conv_51.model.6.m.2.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_51:0:0 */;
  %164 = nn.bias_add(%163, meta[relay.Constant][67] /* ty=Tensor[(64), float32] span=Conv_51.model.6.m.2.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_51:0:0 */;
  %165 = broadcast_to_like(meta[relay.Constant][68] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_52.432:0:0 */, %164) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_52:0:0 */;
  %166 = reshape(%164, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_52:0:0 */;
  %167 = reshape(%165, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_52:0:0 */;
  %168 = nn.prelu(%166, %167, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_52:0:0 */;
  %169 = reshape(%168, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_52:0:0 */;
  %170 = nn.conv2d(%118, meta[relay.Constant][69] /* ty=Tensor[(64, 86, 1, 1), float32] span=Conv_54.model.6.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_54:0:0 */;
  %171 = nn.bias_add(%170, meta[relay.Constant][70] /* ty=Tensor[(64), float32] span=Conv_54.model.6.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_54:0:0 */;
  %172 = broadcast_to_like(meta[relay.Constant][71] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_55.433:0:0 */, %171) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_55:0:0 */;
  %173 = reshape(%171, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_55:0:0 */;
  %174 = reshape(%172, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_55:0:0 */;
  %175 = nn.prelu(%173, %174, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_55:0:0 */;
  %176 = add(%155, %169) /* ty=Tensor[(1, 64, 24, 40), float32] span=Add_53:0:0 */;
  %177 = reshape(%175, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_55:0:0 */;
  %178 = (%176, %177) /* ty=(Tensor[(1, 64, 24, 40), float32], Tensor[(1, 64, 24, 40), float32]) span=Concat_56:0:0 */;
  %179 = concatenate(%178, axis=1) /* ty=Tensor[(1, 128, 24, 40), float32] span=Concat_56:0:0 */;
  %180 = nn.conv2d(%179, meta[relay.Constant][72] /* ty=Tensor[(88, 128, 1, 1), float32] span=Conv_57.model.6.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=88, kernel_size=[1, 1]) /* ty=Tensor[(1, 88, 24, 40), float32] span=Conv_57:0:0 */;
  %181 = nn.bias_add(%180, meta[relay.Constant][73] /* ty=Tensor[(88), float32] span=Conv_57.model.6.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 88, 24, 40), float32] span=Conv_57:0:0 */;
  %182 = broadcast_to_like(meta[relay.Constant][74] /* ty=Tensor[(88, 1, 1), float32] span=PRelu_58.434:0:0 */, %181) /* ty=Tensor[(1, 88, 24, 40), float32] span=PRelu_58:0:0 */;
  %183 = reshape(%181, newshape=[-1]) /* ty=Tensor[(84480), float32] span=PRelu_58:0:0 */;
  %184 = reshape(%182, newshape=[-1]) /* ty=Tensor[(84480), float32] span=PRelu_58:0:0 */;
  %185 = nn.prelu(%183, %184, axis=0) /* ty=Tensor[(84480), float32] span=PRelu_58:0:0 */;
  %186 = reshape(%185, newshape=[1, 88, 24, 40]) /* ty=Tensor[(1, 88, 24, 40), float32] span=PRelu_58:0:0 */;
  %187 = nn.conv2d(%186, meta[relay.Constant][75] /* ty=Tensor[(75, 88, 3, 3), float32] span=Conv_59.model.7.conv.weight:0:0 */, strides=[2, 2], padding=[1, 1, 1, 1], channels=75, kernel_size=[3, 3]) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_59:0:0 */;
  %188 = nn.bias_add(%187, meta[relay.Constant][76] /* ty=Tensor[(75), float32] span=Conv_59.model.7.conv.bias:0:0 */) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_59:0:0 */;
  %189 = broadcast_to_like(meta[relay.Constant][77] /* ty=Tensor[(75, 1, 1), float32] span=PRelu_60.435:0:0 */, %188) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_60:0:0 */;
  %190 = reshape(%188, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_60:0:0 */;
  %191 = reshape(%189, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_60:0:0 */;
  %192 = nn.prelu(%190, %191, axis=0) /* ty=Tensor[(18000), float32] span=PRelu_60:0:0 */;
  %193 = reshape(%192, newshape=[1, 75, 12, 20]) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_60:0:0 */;
  %194 = nn.conv2d(%193, meta[relay.Constant][78] /* ty=Tensor[(75, 75, 1, 1), float32] span=Conv_61.model.8.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=75, kernel_size=[1, 1]) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_61:0:0 */;
  %195 = nn.bias_add(%194, meta[relay.Constant][79] /* ty=Tensor[(75), float32] span=Conv_61.model.8.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_61:0:0 */;
  %196 = broadcast_to_like(meta[relay.Constant][80] /* ty=Tensor[(75, 1, 1), float32] span=PRelu_62.436:0:0 */, %195) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_62:0:0 */;
  %197 = reshape(%195, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_62:0:0 */;
  %198 = reshape(%196, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_62:0:0 */;
  %199 = nn.prelu(%197, %198, axis=0) /* ty=Tensor[(18000), float32] span=PRelu_62:0:0 */;
  %200 = reshape(%199, newshape=[1, 75, 12, 20]) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_62:0:0 */;
  %201 = nn.conv2d(%200, meta[relay.Constant][81] /* ty=Tensor[(85, 75, 1, 1), float32] span=Conv_63.model.8.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=85, kernel_size=[1, 1]) /* ty=Tensor[(1, 85, 12, 20), float32] span=Conv_63:0:0 */;
  %202 = nn.bias_add(%201, meta[relay.Constant][82] /* ty=Tensor[(85), float32] span=Conv_63.model.8.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 85, 12, 20), float32] span=Conv_63:0:0 */;
  %203 = broadcast_to_like(meta[relay.Constant][83] /* ty=Tensor[(85, 1, 1), float32] span=PRelu_64.437:0:0 */, %202) /* ty=Tensor[(1, 85, 12, 20), float32] span=PRelu_64:0:0 */;
  %204 = reshape(%202, newshape=[-1]) /* ty=Tensor[(20400), float32] span=PRelu_64:0:0 */;
  %205 = reshape(%203, newshape=[-1]) /* ty=Tensor[(20400), float32] span=PRelu_64:0:0 */;
  %206 = nn.prelu(%204, %205, axis=0) /* ty=Tensor[(20400), float32] span=PRelu_64:0:0 */;
  %207 = reshape(%206, newshape=[1, 85, 12, 20]) /* ty=Tensor[(1, 85, 12, 20), float32] span=PRelu_64:0:0 */;
  %208 = nn.conv2d(%207, meta[relay.Constant][84] /* ty=Tensor[(75, 85, 3, 3), float32] span=Conv_65.model.8.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=75, kernel_size=[3, 3]) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_65:0:0 */;
  %209 = nn.bias_add(%208, meta[relay.Constant][85] /* ty=Tensor[(75), float32] span=Conv_65.model.8.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_65:0:0 */;
  %210 = broadcast_to_like(meta[relay.Constant][86] /* ty=Tensor[(75, 1, 1), float32] span=PRelu_66.438:0:0 */, %209) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_66:0:0 */;
  %211 = reshape(%209, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_66:0:0 */;
  %212 = reshape(%210, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_66:0:0 */;
  %213 = nn.prelu(%211, %212, axis=0) /* ty=Tensor[(18000), float32] span=PRelu_66:0:0 */;
  %214 = reshape(%213, newshape=[1, 75, 12, 20]) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_66:0:0 */;
  %215 = nn.conv2d(%193, meta[relay.Constant][87] /* ty=Tensor[(90, 75, 1, 1), float32] span=Conv_68.model.8.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=90, kernel_size=[1, 1]) /* ty=Tensor[(1, 90, 12, 20), float32] span=Conv_68:0:0 */;
  %216 = nn.bias_add(%215, meta[relay.Constant][88] /* ty=Tensor[(90), float32] span=Conv_68.model.8.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 90, 12, 20), float32] span=Conv_68:0:0 */;
  %217 = broadcast_to_like(meta[relay.Constant][89] /* ty=Tensor[(90, 1, 1), float32] span=PRelu_69.439:0:0 */, %216) /* ty=Tensor[(1, 90, 12, 20), float32] span=PRelu_69:0:0 */;
  %218 = reshape(%216, newshape=[-1]) /* ty=Tensor[(21600), float32] span=PRelu_69:0:0 */;
  %219 = reshape(%217, newshape=[-1]) /* ty=Tensor[(21600), float32] span=PRelu_69:0:0 */;
  %220 = nn.prelu(%218, %219, axis=0) /* ty=Tensor[(21600), float32] span=PRelu_69:0:0 */;
  %221 = add(%200, %214) /* ty=Tensor[(1, 75, 12, 20), float32] span=Add_67:0:0 */;
  %222 = reshape(%220, newshape=[1, 90, 12, 20]) /* ty=Tensor[(1, 90, 12, 20), float32] span=PRelu_69:0:0 */;
  %223 = (%221, %222) /* ty=(Tensor[(1, 75, 12, 20), float32], Tensor[(1, 90, 12, 20), float32]) span=Concat_70:0:0 */;
  %224 = concatenate(%223, axis=1) /* ty=Tensor[(1, 165, 12, 20), float32] span=Concat_70:0:0 */;
  %225 = nn.conv2d(%224, meta[relay.Constant][90] /* ty=Tensor[(69, 165, 1, 1), float32] span=Conv_71.model.8.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=69, kernel_size=[1, 1]) /* ty=Tensor[(1, 69, 12, 20), float32] span=Conv_71:0:0 */;
  %226 = nn.bias_add(%225, meta[relay.Constant][91] /* ty=Tensor[(69), float32] span=Conv_71.model.8.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 69, 12, 20), float32] span=Conv_71:0:0 */;
  %227 = broadcast_to_like(meta[relay.Constant][92] /* ty=Tensor[(69, 1, 1), float32] span=PRelu_72.440:0:0 */, %226) /* ty=Tensor[(1, 69, 12, 20), float32] span=PRelu_72:0:0 */;
  %228 = reshape(%226, newshape=[-1]) /* ty=Tensor[(16560), float32] span=PRelu_72:0:0 */;
  %229 = reshape(%227, newshape=[-1]) /* ty=Tensor[(16560), float32] span=PRelu_72:0:0 */;
  %230 = nn.prelu(%228, %229, axis=0) /* ty=Tensor[(16560), float32] span=PRelu_72:0:0 */;
  %231 = reshape(%230, newshape=[1, 69, 12, 20]) /* ty=Tensor[(1, 69, 12, 20), float32] span=PRelu_72:0:0 */;
  %232 = nn.conv2d(%231, meta[relay.Constant][93] /* ty=Tensor[(87, 69, 1, 1), float32] span=Conv_73.model.9.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=87, kernel_size=[1, 1]) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_73:0:0 */;
  %233 = nn.bias_add(%232, meta[relay.Constant][94] /* ty=Tensor[(87), float32] span=Conv_73.model.9.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_73:0:0 */;
  %234 = broadcast_to_like(meta[relay.Constant][95] /* ty=Tensor[(87, 1, 1), float32] span=PRelu_74.441:0:0 */, %233) /* ty=Tensor[(1, 87, 12, 20), float32] span=PRelu_74:0:0 */;
  %235 = reshape(%233, newshape=[-1]) /* ty=Tensor[(20880), float32] span=PRelu_74:0:0 */;
  %236 = reshape(%234, newshape=[-1]) /* ty=Tensor[(20880), float32] span=PRelu_74:0:0 */;
  %237 = nn.prelu(%235, %236, axis=0) /* ty=Tensor[(20880), float32] span=PRelu_74:0:0 */;
  %238 = reshape(%237, newshape=[1, 87, 12, 20]) /* ty=Tensor[(1, 87, 12, 20), float32] span=PRelu_74:0:0 */;
  %239 = nn.conv2d(%238, meta[relay.Constant][96] /* ty=Tensor[(76, 87, 3, 3), float32] span=Conv_75.model.9.m.0.weight:0:0 */, padding=[1, 1, 1, 1], channels=76, kernel_size=[3, 3]) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_75:0:0 */;
  %240 = nn.bias_add(%239, meta[relay.Constant][97] /* ty=Tensor[(76), float32] span=Conv_75.model.9.m.0.bias:0:0 */) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_75:0:0 */;
  %241 = nn.conv2d(%240, meta[relay.Constant][98] /* ty=Tensor[(87, 76, 3, 3), float32] span=Conv_76.model.9.m.1.weight:0:0 */, padding=[1, 1, 1, 1], channels=87, kernel_size=[3, 3]) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_76:0:0 */;
  %242 = nn.bias_add(%241, meta[relay.Constant][99] /* ty=Tensor[(87), float32] span=Conv_76.model.9.m.1.bias:0:0 */) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_76:0:0 */;
  %243 = nn.conv2d(%242, meta[relay.Constant][96] /* ty=Tensor[(76, 87, 3, 3), float32] span=Conv_75.model.9.m.0.weight:0:0 */, padding=[1, 1, 1, 1], channels=76, kernel_size=[3, 3]) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_77:0:0 */;
  %244 = nn.bias_add(%243, meta[relay.Constant][97] /* ty=Tensor[(76), float32] span=Conv_75.model.9.m.0.bias:0:0 */) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_77:0:0 */;
  %245 = nn.conv2d(%244, meta[relay.Constant][98] /* ty=Tensor[(87, 76, 3, 3), float32] span=Conv_76.model.9.m.1.weight:0:0 */, padding=[1, 1, 1, 1], channels=87, kernel_size=[3, 3]) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_78:0:0 */;
  %246 = nn.bias_add(%245, meta[relay.Constant][99] /* ty=Tensor[(87), float32] span=Conv_76.model.9.m.1.bias:0:0 */) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_78:0:0 */;
  %247 = nn.conv2d(%246, meta[relay.Constant][96] /* ty=Tensor[(76, 87, 3, 3), float32] span=Conv_75.model.9.m.0.weight:0:0 */, padding=[1, 1, 1, 1], channels=76, kernel_size=[3, 3]) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_79:0:0 */;
  %248 = nn.bias_add(%247, meta[relay.Constant][97] /* ty=Tensor[(76), float32] span=Conv_75.model.9.m.0.bias:0:0 */) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_79:0:0 */;
  %249 = nn.conv2d(%248, meta[relay.Constant][98] /* ty=Tensor[(87, 76, 3, 3), float32] span=Conv_76.model.9.m.1.weight:0:0 */, padding=[1, 1, 1, 1], channels=87, kernel_size=[3, 3]) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_80:0:0 */;
  %250 = nn.bias_add(%249, meta[relay.Constant][99] /* ty=Tensor[(87), float32] span=Conv_76.model.9.m.1.bias:0:0 */) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_80:0:0 */;
  %251 = (%238, %242, %246, %250) /* ty=(Tensor[(1, 87, 12, 20), float32], Tensor[(1, 87, 12, 20), float32], Tensor[(1, 87, 12, 20), float32], Tensor[(1, 87, 12, 20), float32]) span=Concat_81:0:0 */;
  %252 = concatenate(%251, axis=1) /* ty=Tensor[(1, 348, 12, 20), float32] span=Concat_81:0:0 */;
  %253 = nn.conv2d(%252, meta[relay.Constant][100] /* ty=Tensor[(62, 348, 1, 1), float32] span=Conv_82.model.9.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=62, kernel_size=[1, 1]) /* ty=Tensor[(1, 62, 12, 20), float32] span=Conv_82:0:0 */;
  %254 = nn.bias_add(%253, meta[relay.Constant][101] /* ty=Tensor[(62), float32] span=Conv_82.model.9.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 62, 12, 20), float32] span=Conv_82:0:0 */;
  %255 = broadcast_to_like(meta[relay.Constant][102] /* ty=Tensor[(62, 1, 1), float32] span=PRelu_83.442:0:0 */, %254) /* ty=Tensor[(1, 62, 12, 20), float32] span=PRelu_83:0:0 */;
  %256 = reshape(%254, newshape=[-1]) /* ty=Tensor[(14880), float32] span=PRelu_83:0:0 */;
  %257 = reshape(%255, newshape=[-1]) /* ty=Tensor[(14880), float32] span=PRelu_83:0:0 */;
  %258 = nn.prelu(%256, %257, axis=0) /* ty=Tensor[(14880), float32] span=PRelu_83:0:0 */;
  %259 = reshape(%258, newshape=[1, 62, 12, 20]) /* ty=Tensor[(1, 62, 12, 20), float32] span=PRelu_83:0:0 */;
  %260 = nn.conv2d(%259, meta[relay.Constant][103] /* ty=Tensor[(69, 62, 1, 1), float32] span=Conv_84.model.10.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=69, kernel_size=[1, 1]) /* ty=Tensor[(1, 69, 12, 20), float32] span=Conv_84:0:0 */;
  %261 = nn.bias_add(%260, meta[relay.Constant][104] /* ty=Tensor[(69), float32] span=Conv_84.model.10.conv.bias:0:0 */) /* ty=Tensor[(1, 69, 12, 20), float32] span=Conv_84:0:0 */;
  %262 = broadcast_to_like(meta[relay.Constant][105] /* ty=Tensor[(69, 1, 1), float32] span=PRelu_85.443:0:0 */, %261) /* ty=Tensor[(1, 69, 12, 20), float32] span=PRelu_85:0:0 */;
  %263 = reshape(%261, newshape=[-1]) /* ty=Tensor[(16560), float32] span=PRelu_85:0:0 */;
  %264 = reshape(%262, newshape=[-1]) /* ty=Tensor[(16560), float32] span=PRelu_85:0:0 */;
  %265 = nn.prelu(%263, %264, axis=0) /* ty=Tensor[(16560), float32] span=PRelu_85:0:0 */;
  %266 = reshape(%265, newshape=[1, 69, 12, 20]) /* ty=Tensor[(1, 69, 12, 20), float32] span=PRelu_85:0:0 */;
  %267 = nn.conv2d_transpose(%266, meta[relay.Constant][106] /* ty=Tensor[(69, 1, 4, 4), float32] span=ConvTranspose_86.model.11.weight:0:0 */, channels=69, kernel_size=[4, 4], strides=[2, 2], padding=[1, 1, 1, 1], groups=69) /* ty=Tensor[(1, 69, 24, 40), float32] span=ConvTranspose_86:0:0 */;
  %268 = nn.bias_add(%267, meta[relay.Constant][107] /* ty=Tensor[(69), float32] span=ConvTranspose_86.model.11.bias:0:0 */) /* ty=Tensor[(1, 69, 24, 40), float32] span=ConvTranspose_86:0:0 */;
  %269 = nn.conv2d(%268, meta[relay.Constant][108] /* ty=Tensor[(69, 1, 1, 1), float32] span=Conv_87.model.12.conv.weight:0:0 */, padding=[0, 0, 0, 0], groups=69, channels=69, kernel_size=[1, 1]) /* ty=Tensor[(1, 69, 24, 40), float32] span=Conv_87:0:0 */;
  %270 = nn.bias_add(%269, meta[relay.Constant][109] /* ty=Tensor[(69), float32] span=Conv_87.model.12.conv.bias:0:0 */) /* ty=Tensor[(1, 69, 24, 40), float32] span=Conv_87:0:0 */;
  %271 = broadcast_to_like(meta[relay.Constant][110] /* ty=Tensor[(69, 1, 1), float32] span=PRelu_88.444:0:0 */, %270) /* ty=Tensor[(1, 69, 24, 40), float32] span=PRelu_88:0:0 */;
  %272 = reshape(%270, newshape=[-1]) /* ty=Tensor[(66240), float32] span=PRelu_88:0:0 */;
  %273 = reshape(%271, newshape=[-1]) /* ty=Tensor[(66240), float32] span=PRelu_88:0:0 */;
  %274 = nn.prelu(%272, %273, axis=0) /* ty=Tensor[(66240), float32] span=PRelu_88:0:0 */;
  %275 = reshape(%274, newshape=[1, 69, 24, 40]) /* ty=Tensor[(1, 69, 24, 40), float32] span=PRelu_88:0:0 */;
  %276 = (%275, %186) /* ty=(Tensor[(1, 69, 24, 40), float32], Tensor[(1, 88, 24, 40), float32]) span=Concat_89:0:0 */;
  %277 = concatenate(%276, axis=1) /* ty=Tensor[(1, 157, 24, 40), float32] span=Concat_89:0:0 */;
  %278 = nn.conv2d(%277, meta[relay.Constant][111] /* ty=Tensor[(64, 157, 1, 1), float32] span=Conv_90.model.14.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_90:0:0 */;
  %279 = nn.bias_add(%278, meta[relay.Constant][112] /* ty=Tensor[(64), float32] span=Conv_90.model.14.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_90:0:0 */;
  %280 = broadcast_to_like(meta[relay.Constant][113] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_91.445:0:0 */, %279) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_91:0:0 */;
  %281 = reshape(%279, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_91:0:0 */;
  %282 = reshape(%280, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_91:0:0 */;
  %283 = nn.prelu(%281, %282, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_91:0:0 */;
  %284 = reshape(%283, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_91:0:0 */;
  %285 = nn.conv2d(%284, meta[relay.Constant][114] /* ty=Tensor[(64, 64, 1, 1), float32] span=Conv_92.model.14.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_92:0:0 */;
  %286 = nn.bias_add(%285, meta[relay.Constant][115] /* ty=Tensor[(64), float32] span=Conv_92.model.14.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_92:0:0 */;
  %287 = broadcast_to_like(meta[relay.Constant][116] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_93.446:0:0 */, %286) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_93:0:0 */;
  %288 = reshape(%286, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_93:0:0 */;
  %289 = reshape(%287, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_93:0:0 */;
  %290 = nn.prelu(%288, %289, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_93:0:0 */;
  %291 = reshape(%290, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_93:0:0 */;
  %292 = nn.conv2d(%291, meta[relay.Constant][117] /* ty=Tensor[(64, 64, 3, 3), float32] span=Conv_94.model.14.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_94:0:0 */;
  %293 = nn.bias_add(%292, meta[relay.Constant][118] /* ty=Tensor[(64), float32] span=Conv_94.model.14.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_94:0:0 */;
  %294 = broadcast_to_like(meta[relay.Constant][119] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_95.447:0:0 */, %293) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_95:0:0 */;
  %295 = reshape(%293, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_95:0:0 */;
  %296 = reshape(%294, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_95:0:0 */;
  %297 = nn.prelu(%295, %296, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_95:0:0 */;
  %298 = nn.conv2d(%277, meta[relay.Constant][120] /* ty=Tensor[(64, 157, 1, 1), float32] span=Conv_96.model.14.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_96:0:0 */;
  %299 = nn.bias_add(%298, meta[relay.Constant][121] /* ty=Tensor[(64), float32] span=Conv_96.model.14.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_96:0:0 */;
  %300 = broadcast_to_like(meta[relay.Constant][122] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_97.448:0:0 */, %299) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_97:0:0 */;
  %301 = reshape(%299, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_97:0:0 */;
  %302 = reshape(%300, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_97:0:0 */;
  %303 = nn.prelu(%301, %302, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_97:0:0 */;
  %304 = reshape(%297, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_95:0:0 */;
  %305 = reshape(%303, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_97:0:0 */;
  %306 = (%304, %305) /* ty=(Tensor[(1, 64, 24, 40), float32], Tensor[(1, 64, 24, 40), float32]) span=Concat_98:0:0 */;
  %307 = concatenate(%306, axis=1) /* ty=Tensor[(1, 128, 24, 40), float32] span=Concat_98:0:0 */;
  %308 = nn.conv2d(%307, meta[relay.Constant][123] /* ty=Tensor[(91, 128, 1, 1), float32] span=Conv_99.model.14.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=91, kernel_size=[1, 1]) /* ty=Tensor[(1, 91, 24, 40), float32] span=Conv_99:0:0 */;
  %309 = nn.bias_add(%308, meta[relay.Constant][124] /* ty=Tensor[(91), float32] span=Conv_99.model.14.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 91, 24, 40), float32] span=Conv_99:0:0 */;
  %310 = broadcast_to_like(meta[relay.Constant][125] /* ty=Tensor[(91, 1, 1), float32] span=PRelu_100.449:0:0 */, %309) /* ty=Tensor[(1, 91, 24, 40), float32] span=PRelu_100:0:0 */;
  %311 = reshape(%309, newshape=[-1]) /* ty=Tensor[(87360), float32] span=PRelu_100:0:0 */;
  %312 = reshape(%310, newshape=[-1]) /* ty=Tensor[(87360), float32] span=PRelu_100:0:0 */;
  %313 = nn.prelu(%311, %312, axis=0) /* ty=Tensor[(87360), float32] span=PRelu_100:0:0 */;
  %314 = reshape(%313, newshape=[1, 91, 24, 40]) /* ty=Tensor[(1, 91, 24, 40), float32] span=PRelu_100:0:0 */;
  %315 = nn.conv2d(%314, meta[relay.Constant][126] /* ty=Tensor[(64, 91, 1, 1), float32] span=Conv_101.model.15.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_101:0:0 */;
  %316 = nn.bias_add(%315, meta[relay.Constant][127] /* ty=Tensor[(64), float32] span=Conv_101.model.15.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_101:0:0 */;
  %317 = broadcast_to_like(meta[relay.Constant][128] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_102.450:0:0 */, %316) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_102:0:0 */;
  %318 = reshape(%316, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_102:0:0 */;
  %319 = reshape(%317, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_102:0:0 */;
  %320 = nn.prelu(%318, %319, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_102:0:0 */;
  %321 = reshape(%320, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_102:0:0 */;
  %322 = nn.conv2d_transpose(%321, meta[relay.Constant][129] /* ty=Tensor[(64, 1, 4, 4), float32] span=ConvTranspose_103.model.16.weight:0:0 */, channels=64, kernel_size=[4, 4], strides=[2, 2], padding=[1, 1, 1, 1], groups=64) /* ty=Tensor[(1, 64, 48, 80), float32] span=ConvTranspose_103:0:0 */;
  %323 = nn.bias_add(%322, meta[relay.Constant][130] /* ty=Tensor[(64), float32] span=ConvTranspose_103.model.16.bias:0:0 */) /* ty=Tensor[(1, 64, 48, 80), float32] span=ConvTranspose_103:0:0 */;
  %324 = nn.conv2d(%323, meta[relay.Constant][131] /* ty=Tensor[(64, 1, 1, 1), float32] span=Conv_104.model.17.conv.weight:0:0 */, padding=[0, 0, 0, 0], groups=64, channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 48, 80), float32] span=Conv_104:0:0 */;
  %325 = nn.bias_add(%324, meta[relay.Constant][132] /* ty=Tensor[(64), float32] span=Conv_104.model.17.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 48, 80), float32] span=Conv_104:0:0 */;
  %326 = broadcast_to_like(meta[relay.Constant][133] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_105.451:0:0 */, %325) /* ty=Tensor[(1, 64, 48, 80), float32] span=PRelu_105:0:0 */;
  %327 = reshape(%325, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_105:0:0 */;
  %328 = reshape(%326, newshape=[-1]) /* ty=Tensor[(245760), float32] span=PRelu_105:0:0 */;
  %329 = nn.prelu(%327, %328, axis=0) /* ty=Tensor[(245760), float32] span=PRelu_105:0:0 */;
  %330 = reshape(%329, newshape=[1, 64, 48, 80]) /* ty=Tensor[(1, 64, 48, 80), float32] span=PRelu_105:0:0 */;
  %331 = (%330, %111) /* ty=(Tensor[(1, 64, 48, 80), float32], Tensor[(1, 64, 48, 80), float32]) span=Concat_106:0:0 */;
  %332 = concatenate(%331, axis=1) /* ty=Tensor[(1, 128, 48, 80), float32] span=Concat_106:0:0 */;
  %333 = nn.conv2d(%332, meta[relay.Constant][134] /* ty=Tensor[(32, 128, 1, 1), float32] span=Conv_107.model.19.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_107:0:0 */;
  %334 = nn.bias_add(%333, meta[relay.Constant][135] /* ty=Tensor[(32), float32] span=Conv_107.model.19.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_107:0:0 */;
  %335 = broadcast_to_like(meta[relay.Constant][136] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_108.452:0:0 */, %334) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_108:0:0 */;
  %336 = reshape(%334, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_108:0:0 */;
  %337 = reshape(%335, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_108:0:0 */;
  %338 = nn.prelu(%336, %337, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_108:0:0 */;
  %339 = reshape(%338, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_108:0:0 */;
  %340 = nn.conv2d(%339, meta[relay.Constant][137] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_109.model.19.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_109:0:0 */;
  %341 = nn.bias_add(%340, meta[relay.Constant][138] /* ty=Tensor[(32), float32] span=Conv_109.model.19.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_109:0:0 */;
  %342 = broadcast_to_like(meta[relay.Constant][139] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_110.453:0:0 */, %341) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_110:0:0 */;
  %343 = reshape(%341, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_110:0:0 */;
  %344 = reshape(%342, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_110:0:0 */;
  %345 = nn.prelu(%343, %344, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_110:0:0 */;
  %346 = reshape(%345, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_110:0:0 */;
  %347 = nn.conv2d(%346, meta[relay.Constant][140] /* ty=Tensor[(32, 32, 3, 3), float32] span=Conv_111.model.19.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_111:0:0 */;
  %348 = nn.bias_add(%347, meta[relay.Constant][141] /* ty=Tensor[(32), float32] span=Conv_111.model.19.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_111:0:0 */;
  %349 = broadcast_to_like(meta[relay.Constant][142] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_112.454:0:0 */, %348) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_112:0:0 */;
  %350 = reshape(%348, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_112:0:0 */;
  %351 = reshape(%349, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_112:0:0 */;
  %352 = nn.prelu(%350, %351, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_112:0:0 */;
  %353 = nn.conv2d(%332, meta[relay.Constant][143] /* ty=Tensor[(32, 128, 1, 1), float32] span=Conv_113.model.19.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_113:0:0 */;
  %354 = nn.bias_add(%353, meta[relay.Constant][144] /* ty=Tensor[(32), float32] span=Conv_113.model.19.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 32, 48, 80), float32] span=Conv_113:0:0 */;
  %355 = broadcast_to_like(meta[relay.Constant][145] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_114.455:0:0 */, %354) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_114:0:0 */;
  %356 = reshape(%354, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_114:0:0 */;
  %357 = reshape(%355, newshape=[-1]) /* ty=Tensor[(122880), float32] span=PRelu_114:0:0 */;
  %358 = nn.prelu(%356, %357, axis=0) /* ty=Tensor[(122880), float32] span=PRelu_114:0:0 */;
  %359 = reshape(%352, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_112:0:0 */;
  %360 = reshape(%358, newshape=[1, 32, 48, 80]) /* ty=Tensor[(1, 32, 48, 80), float32] span=PRelu_114:0:0 */;
  %361 = (%359, %360) /* ty=(Tensor[(1, 32, 48, 80), float32], Tensor[(1, 32, 48, 80), float32]) span=Concat_115:0:0 */;
  %362 = concatenate(%361, axis=1) /* ty=Tensor[(1, 64, 48, 80), float32] span=Concat_115:0:0 */;
  %363 = nn.conv2d(%362, meta[relay.Constant][146] /* ty=Tensor[(61, 64, 1, 1), float32] span=Conv_116.model.19.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=61, kernel_size=[1, 1]) /* ty=Tensor[(1, 61, 48, 80), float32] span=Conv_116:0:0 */;
  %364 = nn.bias_add(%363, meta[relay.Constant][147] /* ty=Tensor[(61), float32] span=Conv_116.model.19.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 61, 48, 80), float32] span=Conv_116:0:0 */;
  %365 = broadcast_to_like(meta[relay.Constant][148] /* ty=Tensor[(61, 1, 1), float32] span=PRelu_117.456:0:0 */, %364) /* ty=Tensor[(1, 61, 48, 80), float32] span=PRelu_117:0:0 */;
  %366 = reshape(%364, newshape=[-1]) /* ty=Tensor[(234240), float32] span=PRelu_117:0:0 */;
  %367 = reshape(%365, newshape=[-1]) /* ty=Tensor[(234240), float32] span=PRelu_117:0:0 */;
  %368 = nn.prelu(%366, %367, axis=0) /* ty=Tensor[(234240), float32] span=PRelu_117:0:0 */;
  %369 = reshape(%368, newshape=[1, 61, 48, 80]) /* ty=Tensor[(1, 61, 48, 80), float32] span=PRelu_117:0:0 */;
  %370 = nn.conv2d(%369, meta[relay.Constant][149] /* ty=Tensor[(27, 61, 1, 1), float32] span=Conv_146.model.26.m.0.weight:0:0 */, padding=[0, 0, 0, 0], channels=27, kernel_size=[1, 1]) /* ty=Tensor[(1, 27, 48, 80), float32] span=Conv_146:0:0 */;
  %371 = nn.bias_add(%370, meta[relay.Constant][150] /* ty=Tensor[(27), float32] span=Conv_146.model.26.m.0.bias:0:0 */) /* ty=Tensor[(1, 27, 48, 80), float32] span=Conv_146:0:0 */;
  %372 = nn.conv2d(%369, meta[relay.Constant][151] /* ty=Tensor[(64, 61, 3, 3), float32] span=Conv_118.model.20.conv.weight:0:0 */, strides=[2, 2], padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_118:0:0 */;
  %373 = nn.bias_add(%372, meta[relay.Constant][152] /* ty=Tensor[(64), float32] span=Conv_118.model.20.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_118:0:0 */;
  %374 = broadcast_to_like(meta[relay.Constant][153] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_119.457:0:0 */, %373) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_119:0:0 */;
  %375 = reshape(%373, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_119:0:0 */;
  %376 = reshape(%374, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_119:0:0 */;
  %377 = nn.prelu(%375, %376, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_119:0:0 */;
  %378 = reshape(%377, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_119:0:0 */;
  %379 = (%378, %314) /* ty=(Tensor[(1, 64, 24, 40), float32], Tensor[(1, 91, 24, 40), float32]) span=Concat_120:0:0 */;
  %380 = concatenate(%379, axis=1) /* ty=Tensor[(1, 155, 24, 40), float32] span=Concat_120:0:0 */;
  %381 = nn.conv2d(%380, meta[relay.Constant][154] /* ty=Tensor[(64, 155, 1, 1), float32] span=Conv_121.model.22.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_121:0:0 */;
  %382 = nn.bias_add(%381, meta[relay.Constant][155] /* ty=Tensor[(64), float32] span=Conv_121.model.22.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_121:0:0 */;
  %383 = broadcast_to_like(meta[relay.Constant][156] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_122.458:0:0 */, %382) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_122:0:0 */;
  %384 = reshape(%382, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_122:0:0 */;
  %385 = reshape(%383, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_122:0:0 */;
  %386 = nn.prelu(%384, %385, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_122:0:0 */;
  %387 = reshape(%386, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_122:0:0 */;
  %388 = nn.conv2d(%387, meta[relay.Constant][157] /* ty=Tensor[(64, 64, 1, 1), float32] span=Conv_123.model.22.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_123:0:0 */;
  %389 = nn.bias_add(%388, meta[relay.Constant][158] /* ty=Tensor[(64), float32] span=Conv_123.model.22.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_123:0:0 */;
  %390 = broadcast_to_like(meta[relay.Constant][159] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_124.459:0:0 */, %389) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_124:0:0 */;
  %391 = reshape(%389, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_124:0:0 */;
  %392 = reshape(%390, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_124:0:0 */;
  %393 = nn.prelu(%391, %392, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_124:0:0 */;
  %394 = reshape(%393, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_124:0:0 */;
  %395 = nn.conv2d(%394, meta[relay.Constant][160] /* ty=Tensor[(64, 64, 3, 3), float32] span=Conv_125.model.22.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_125:0:0 */;
  %396 = nn.bias_add(%395, meta[relay.Constant][161] /* ty=Tensor[(64), float32] span=Conv_125.model.22.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_125:0:0 */;
  %397 = broadcast_to_like(meta[relay.Constant][162] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_126.460:0:0 */, %396) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_126:0:0 */;
  %398 = reshape(%396, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_126:0:0 */;
  %399 = reshape(%397, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_126:0:0 */;
  %400 = nn.prelu(%398, %399, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_126:0:0 */;
  %401 = nn.conv2d(%380, meta[relay.Constant][163] /* ty=Tensor[(64, 155, 1, 1), float32] span=Conv_127.model.22.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_127:0:0 */;
  %402 = nn.bias_add(%401, meta[relay.Constant][164] /* ty=Tensor[(64), float32] span=Conv_127.model.22.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 64, 24, 40), float32] span=Conv_127:0:0 */;
  %403 = broadcast_to_like(meta[relay.Constant][165] /* ty=Tensor[(64, 1, 1), float32] span=PRelu_128.461:0:0 */, %402) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_128:0:0 */;
  %404 = reshape(%402, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_128:0:0 */;
  %405 = reshape(%403, newshape=[-1]) /* ty=Tensor[(61440), float32] span=PRelu_128:0:0 */;
  %406 = nn.prelu(%404, %405, axis=0) /* ty=Tensor[(61440), float32] span=PRelu_128:0:0 */;
  %407 = reshape(%400, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_126:0:0 */;
  %408 = reshape(%406, newshape=[1, 64, 24, 40]) /* ty=Tensor[(1, 64, 24, 40), float32] span=PRelu_128:0:0 */;
  %409 = (%407, %408) /* ty=(Tensor[(1, 64, 24, 40), float32], Tensor[(1, 64, 24, 40), float32]) span=Concat_129:0:0 */;
  %410 = concatenate(%409, axis=1) /* ty=Tensor[(1, 128, 24, 40), float32] span=Concat_129:0:0 */;
  %411 = nn.conv2d(%410, meta[relay.Constant][166] /* ty=Tensor[(73, 128, 1, 1), float32] span=Conv_130.model.22.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=73, kernel_size=[1, 1]) /* ty=Tensor[(1, 73, 24, 40), float32] span=Conv_130:0:0 */;
  %412 = nn.bias_add(%411, meta[relay.Constant][167] /* ty=Tensor[(73), float32] span=Conv_130.model.22.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 73, 24, 40), float32] span=Conv_130:0:0 */;
  %413 = broadcast_to_like(meta[relay.Constant][168] /* ty=Tensor[(73, 1, 1), float32] span=PRelu_131.462:0:0 */, %412) /* ty=Tensor[(1, 73, 24, 40), float32] span=PRelu_131:0:0 */;
  %414 = reshape(%412, newshape=[-1]) /* ty=Tensor[(70080), float32] span=PRelu_131:0:0 */;
  %415 = reshape(%413, newshape=[-1]) /* ty=Tensor[(70080), float32] span=PRelu_131:0:0 */;
  %416 = nn.prelu(%414, %415, axis=0) /* ty=Tensor[(70080), float32] span=PRelu_131:0:0 */;
  %417 = reshape(%416, newshape=[1, 73, 24, 40]) /* ty=Tensor[(1, 73, 24, 40), float32] span=PRelu_131:0:0 */;
  %418 = nn.conv2d(%417, meta[relay.Constant][169] /* ty=Tensor[(27, 73, 1, 1), float32] span=Conv_148.model.26.m.1.weight:0:0 */, padding=[0, 0, 0, 0], channels=27, kernel_size=[1, 1]) /* ty=Tensor[(1, 27, 24, 40), float32] span=Conv_148:0:0 */;
  %419 = nn.bias_add(%418, meta[relay.Constant][170] /* ty=Tensor[(27), float32] span=Conv_148.model.26.m.1.bias:0:0 */) /* ty=Tensor[(1, 27, 24, 40), float32] span=Conv_148:0:0 */;
  %420 = nn.conv2d(%417, meta[relay.Constant][171] /* ty=Tensor[(87, 73, 3, 3), float32] span=Conv_132.model.23.conv.weight:0:0 */, strides=[2, 2], padding=[1, 1, 1, 1], channels=87, kernel_size=[3, 3]) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_132:0:0 */;
  %421 = nn.bias_add(%420, meta[relay.Constant][172] /* ty=Tensor[(87), float32] span=Conv_132.model.23.conv.bias:0:0 */) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_132:0:0 */;
  %422 = broadcast_to_like(meta[relay.Constant][173] /* ty=Tensor[(87, 1, 1), float32] span=PRelu_133.463:0:0 */, %421) /* ty=Tensor[(1, 87, 12, 20), float32] span=PRelu_133:0:0 */;
  %423 = reshape(%421, newshape=[-1]) /* ty=Tensor[(20880), float32] span=PRelu_133:0:0 */;
  %424 = reshape(%422, newshape=[-1]) /* ty=Tensor[(20880), float32] span=PRelu_133:0:0 */;
  %425 = nn.prelu(%423, %424, axis=0) /* ty=Tensor[(20880), float32] span=PRelu_133:0:0 */;
  %426 = reshape(%425, newshape=[1, 87, 12, 20]) /* ty=Tensor[(1, 87, 12, 20), float32] span=PRelu_133:0:0 */;
  %427 = (%426, %266) /* ty=(Tensor[(1, 87, 12, 20), float32], Tensor[(1, 69, 12, 20), float32]) span=Concat_134:0:0 */;
  %428 = concatenate(%427, axis=1) /* ty=Tensor[(1, 156, 12, 20), float32] span=Concat_134:0:0 */;
  %429 = nn.conv2d(%428, meta[relay.Constant][174] /* ty=Tensor[(87, 156, 1, 1), float32] span=Conv_135.model.25.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=87, kernel_size=[1, 1]) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_135:0:0 */;
  %430 = nn.bias_add(%429, meta[relay.Constant][175] /* ty=Tensor[(87), float32] span=Conv_135.model.25.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 87, 12, 20), float32] span=Conv_135:0:0 */;
  %431 = broadcast_to_like(meta[relay.Constant][176] /* ty=Tensor[(87, 1, 1), float32] span=PRelu_136.464:0:0 */, %430) /* ty=Tensor[(1, 87, 12, 20), float32] span=PRelu_136:0:0 */;
  %432 = reshape(%430, newshape=[-1]) /* ty=Tensor[(20880), float32] span=PRelu_136:0:0 */;
  %433 = reshape(%431, newshape=[-1]) /* ty=Tensor[(20880), float32] span=PRelu_136:0:0 */;
  %434 = nn.prelu(%432, %433, axis=0) /* ty=Tensor[(20880), float32] span=PRelu_136:0:0 */;
  %435 = reshape(%434, newshape=[1, 87, 12, 20]) /* ty=Tensor[(1, 87, 12, 20), float32] span=PRelu_136:0:0 */;
  %436 = nn.conv2d(%435, meta[relay.Constant][177] /* ty=Tensor[(89, 87, 1, 1), float32] span=Conv_137.model.25.m.0.cv1.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=89, kernel_size=[1, 1]) /* ty=Tensor[(1, 89, 12, 20), float32] span=Conv_137:0:0 */;
  %437 = nn.bias_add(%436, meta[relay.Constant][178] /* ty=Tensor[(89), float32] span=Conv_137.model.25.m.0.cv1.conv.bias:0:0 */) /* ty=Tensor[(1, 89, 12, 20), float32] span=Conv_137:0:0 */;
  %438 = broadcast_to_like(meta[relay.Constant][179] /* ty=Tensor[(89, 1, 1), float32] span=PRelu_138.465:0:0 */, %437) /* ty=Tensor[(1, 89, 12, 20), float32] span=PRelu_138:0:0 */;
  %439 = reshape(%437, newshape=[-1]) /* ty=Tensor[(21360), float32] span=PRelu_138:0:0 */;
  %440 = reshape(%438, newshape=[-1]) /* ty=Tensor[(21360), float32] span=PRelu_138:0:0 */;
  %441 = nn.prelu(%439, %440, axis=0) /* ty=Tensor[(21360), float32] span=PRelu_138:0:0 */;
  %442 = reshape(%441, newshape=[1, 89, 12, 20]) /* ty=Tensor[(1, 89, 12, 20), float32] span=PRelu_138:0:0 */;
  %443 = nn.conv2d(%442, meta[relay.Constant][180] /* ty=Tensor[(95, 89, 3, 3), float32] span=Conv_139.model.25.m.0.cv2.conv.weight:0:0 */, padding=[1, 1, 1, 1], channels=95, kernel_size=[3, 3]) /* ty=Tensor[(1, 95, 12, 20), float32] span=Conv_139:0:0 */;
  %444 = nn.bias_add(%443, meta[relay.Constant][181] /* ty=Tensor[(95), float32] span=Conv_139.model.25.m.0.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 95, 12, 20), float32] span=Conv_139:0:0 */;
  %445 = broadcast_to_like(meta[relay.Constant][182] /* ty=Tensor[(95, 1, 1), float32] span=PRelu_140.466:0:0 */, %444) /* ty=Tensor[(1, 95, 12, 20), float32] span=PRelu_140:0:0 */;
  %446 = reshape(%444, newshape=[-1]) /* ty=Tensor[(22800), float32] span=PRelu_140:0:0 */;
  %447 = reshape(%445, newshape=[-1]) /* ty=Tensor[(22800), float32] span=PRelu_140:0:0 */;
  %448 = nn.prelu(%446, %447, axis=0) /* ty=Tensor[(22800), float32] span=PRelu_140:0:0 */;
  %449 = nn.conv2d(%428, meta[relay.Constant][183] /* ty=Tensor[(76, 156, 1, 1), float32] span=Conv_141.model.25.cv2.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=76, kernel_size=[1, 1]) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_141:0:0 */;
  %450 = nn.bias_add(%449, meta[relay.Constant][184] /* ty=Tensor[(76), float32] span=Conv_141.model.25.cv2.conv.bias:0:0 */) /* ty=Tensor[(1, 76, 12, 20), float32] span=Conv_141:0:0 */;
  %451 = broadcast_to_like(meta[relay.Constant][185] /* ty=Tensor[(76, 1, 1), float32] span=PRelu_142.467:0:0 */, %450) /* ty=Tensor[(1, 76, 12, 20), float32] span=PRelu_142:0:0 */;
  %452 = reshape(%450, newshape=[-1]) /* ty=Tensor[(18240), float32] span=PRelu_142:0:0 */;
  %453 = reshape(%451, newshape=[-1]) /* ty=Tensor[(18240), float32] span=PRelu_142:0:0 */;
  %454 = nn.prelu(%452, %453, axis=0) /* ty=Tensor[(18240), float32] span=PRelu_142:0:0 */;
  %455 = reshape(%448, newshape=[1, 95, 12, 20]) /* ty=Tensor[(1, 95, 12, 20), float32] span=PRelu_140:0:0 */;
  %456 = reshape(%454, newshape=[1, 76, 12, 20]) /* ty=Tensor[(1, 76, 12, 20), float32] span=PRelu_142:0:0 */;
  %457 = (%455, %456) /* ty=(Tensor[(1, 95, 12, 20), float32], Tensor[(1, 76, 12, 20), float32]) span=Concat_143:0:0 */;
  %458 = concatenate(%457, axis=1) /* ty=Tensor[(1, 171, 12, 20), float32] span=Concat_143:0:0 */;
  %459 = nn.conv2d(%458, meta[relay.Constant][186] /* ty=Tensor[(75, 171, 1, 1), float32] span=Conv_144.model.25.cv3.conv.weight:0:0 */, padding=[0, 0, 0, 0], channels=75, kernel_size=[1, 1]) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_144:0:0 */;
  %460 = nn.bias_add(%459, meta[relay.Constant][187] /* ty=Tensor[(75), float32] span=Conv_144.model.25.cv3.conv.bias:0:0 */) /* ty=Tensor[(1, 75, 12, 20), float32] span=Conv_144:0:0 */;
  %461 = broadcast_to_like(meta[relay.Constant][188] /* ty=Tensor[(75, 1, 1), float32] span=PRelu_145.468:0:0 */, %460) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_145:0:0 */;
  %462 = reshape(%460, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_145:0:0 */;
  %463 = reshape(%461, newshape=[-1]) /* ty=Tensor[(18000), float32] span=PRelu_145:0:0 */;
  %464 = nn.prelu(%462, %463, axis=0) /* ty=Tensor[(18000), float32] span=PRelu_145:0:0 */;
  %465 = reshape(%464, newshape=[1, 75, 12, 20]) /* ty=Tensor[(1, 75, 12, 20), float32] span=PRelu_145:0:0 */;
  %466 = nn.conv2d(%465, meta[relay.Constant][189] /* ty=Tensor[(27, 75, 1, 1), float32] span=Conv_150.model.26.m.2.weight:0:0 */, padding=[0, 0, 0, 0], channels=27, kernel_size=[1, 1]) /* ty=Tensor[(1, 27, 12, 20), float32] span=Conv_150:0:0 */;
  %467 = nn.bias_add(%466, meta[relay.Constant][190] /* ty=Tensor[(27), float32] span=Conv_150.model.26.m.2.bias:0:0 */) /* ty=Tensor[(1, 27, 12, 20), float32] span=Conv_150:0:0 */;
  %468 = sigmoid(%371) /* ty=Tensor[(1, 27, 48, 80), float32] span=Sigmoid_147:0:0 */;
  %469 = sigmoid(%419) /* ty=Tensor[(1, 27, 24, 40), float32] span=Sigmoid_149:0:0 */;
  %470 = sigmoid(%467) /* ty=Tensor[(1, 27, 12, 20), float32] span=Sigmoid_151:0:0 */;
  (%468, %469, %470) /* ty=(Tensor[(1, 27, 48, 80), float32], Tensor[(1, 27, 24, 40), float32], Tensor[(1, 27, 12, 20), float32]) */
}