tvm.topi.tensor 源代码
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,consider-using-enumerate,unused-argument,len-as-condition
"""Elementwise operators"""
from typing import Optional
from tvm import te
from . import cpp
[文档]
def elemwise_sum(xs):
"""Perform element-wise sum on inputs
Parameters
----------
xs : list of tvm.te.Tensor
Input arguments.
Returns
-------
y : tvm.te.Tensor
The result.
"""
return cpp.elemwise_sum(xs)
[文档]
def full(shape, dtype, fill_value):
"""Fill tensor with fill_value
Parameters
----------
shape : tuple
Input tensor shape.
dtype : str
Data type
fill_value : float
Value to be filled
Returns
-------
y : tvm.te.Tensor
The result.
"""
return cpp.full(shape, dtype, fill_value)
[文档]
def full_like(x, fill_value):
"""Construct a tensor with same shape as input tensor,
then fill tensor with fill_value.
Parameters
----------
x : tvm.te.Tensor
Input argument.
fill_value : float
Value to be filled
Returns
-------
y : tvm.te.Tensor
The result.
"""
return cpp.full_like(x, fill_value)
[文档]
def eye(n: int, m: Optional[int] = None, k: int = 0, dtype: str = "float32") -> te.Tensor:
"""Generate an identity matrix or a matrix with ones on the k-th diagonal.
Parameters
----------
n : int
Number of rows
m : int, optional
Number of columns. If None, defaults to n.
k : int, optional
Index of the diagonal. 0 (default) refers to the main diagonal.
A positive value refers to an upper diagonal, and a negative value
to a lower diagonal.
dtype : str, optional
Data type of the returned array.
Returns
-------
y : tvm.te.Tensor
The result.
"""
m = m if m is not None else n
return te.compute(
(n, m),
lambda i, j: te.if_then_else(i == j - k, te.const(1, dtype), te.const(0, dtype)),
name="eye",
)