tvm.topi.tensor 源代码

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=invalid-name,consider-using-enumerate,unused-argument,len-as-condition
"""Elementwise operators"""

from typing import Optional

from tvm import te

from . import cpp


[文档] def elemwise_sum(xs): """Perform element-wise sum on inputs Parameters ---------- xs : list of tvm.te.Tensor Input arguments. Returns ------- y : tvm.te.Tensor The result. """ return cpp.elemwise_sum(xs)
[文档] def full(shape, dtype, fill_value): """Fill tensor with fill_value Parameters ---------- shape : tuple Input tensor shape. dtype : str Data type fill_value : float Value to be filled Returns ------- y : tvm.te.Tensor The result. """ return cpp.full(shape, dtype, fill_value)
[文档] def full_like(x, fill_value): """Construct a tensor with same shape as input tensor, then fill tensor with fill_value. Parameters ---------- x : tvm.te.Tensor Input argument. fill_value : float Value to be filled Returns ------- y : tvm.te.Tensor The result. """ return cpp.full_like(x, fill_value)
[文档] def eye(n: int, m: Optional[int] = None, k: int = 0, dtype: str = "float32") -> te.Tensor: """Generate an identity matrix or a matrix with ones on the k-th diagonal. Parameters ---------- n : int Number of rows m : int, optional Number of columns. If None, defaults to n. k : int, optional Index of the diagonal. 0 (default) refers to the main diagonal. A positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : str, optional Data type of the returned array. Returns ------- y : tvm.te.Tensor The result. """ m = m if m is not None else n return te.compute( (n, m), lambda i, j: te.if_then_else(i == j - k, te.const(1, dtype), te.const(0, dtype)), name="eye", )