tvm.topi.scatter_elements 源代码

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""ScatterElements operator"""
from tvm import te
from tvm import tir
from . import utils
from .math import cast


[文档] def scatter_elements(data, indices, updates, axis=0, reduction="update"): """Scatter elements from updates to corresponding indices of copied data. Data, indices, updates and output have the same shape. Indices can not have duplicates (if idx1 != idx2, then indices[idx1] != indices[idx2]) if reduction == "update". .. code-block:: output[indices[i][j]][j] = f(output[indices[i][j]][j], updates[i][j]) if axis = 0 output[i][indices[i][j]] = f(output[i][indices[i][j]], updates[i][j]) if axis = 1 where the update function f is determined by the reduction. Five types of the function are supported: "update", "add", "mul", "min" and "max" (see below) Parameters ---------- data : tvm.te.Tensor The source array. indices : tvm.te.Tensor The indices of the values to extract. updates : tvm.te.Tensor The updates to apply at the Indices axis : optional, int The axis to scatter on. It is zero by default. reduction : optional, string The update mode for the algorithm, either "update", "add", "mul", "min" or "max" If update, the update values will replace the input data If add, the update values will be added to the input data If mul, the input data will be multiplied on the update values If mean, the input data will be mean between the update values and the input data If min, there is choice of minimal between the update values and the input data If max, there is choice of maximal between the update values and the input data It is "update" by default Returns ------- ret : tvm.te.Tensor """ if not isinstance(axis, int): axis = utils.get_const_int(axis) # Prepare ranges and strides shape = data.shape if axis < 0: axis = len(shape) + axis axis_range = cast(shape[axis], indices.dtype) full_range = 1 after_axis_range = 1 for i, value in enumerate(shape, 0): full_range *= value if i > axis: after_axis_range *= value before_axis_stride = axis_range * after_axis_range ind_shape = indices.shape ind_axis_range = ind_shape[axis] ind_before_axis_range = 1 ind_after_axis_range = 1 for i, value in enumerate(ind_shape, 0): if i < axis: ind_before_axis_range *= value elif i > axis: ind_after_axis_range *= value ind_before_axis_stride = ind_axis_range * ind_after_axis_range def gen_ir(data_ptr, indices_ptr, updates_ptr, out_ptr, reduce_func): # pylint: disable=invalid-name ib = tir.ir_builder.create() data = ib.buffer_ptr(data_ptr) indices = ib.buffer_ptr(indices_ptr) updates = ib.buffer_ptr(updates_ptr) out = ib.buffer_ptr(out_ptr) # Copy initial input data to output with ib.for_range(0, full_range, "i", kind="parallel") as i: out[i] = data[i] with ib.for_range( 0, ind_before_axis_range * ind_after_axis_range, "fused", kind="parallel" ) as fused: i = fused // ind_after_axis_range j = fused % ind_after_axis_range pre_index1 = i * ind_before_axis_stride + j pre_index2 = i * before_axis_stride + j with ib.for_range(0, ind_axis_range, "k") as k: # Offset along indices or updates index1 = pre_index1 + k * ind_after_axis_range # Get index and shift to positive side if need k_new = indices[index1] shifted_index = k_new + (k_new < 0) * axis_range # Offset along data index2 = pre_index2 + shifted_index * after_axis_range reduce_func(out, index2, updates[index1]) return ib.get() def update_func(dst_ptr, dst_index, update): dst_ptr[dst_index] = update def add_func(dst_ptr, dst_index, update): dst_ptr[dst_index] += update def mul_func(dst_ptr, dst_index, update): dst_ptr[dst_index] *= update def mean_func(dst_ptr, dst_index, update): dst_ptr[dst_index] = (dst_ptr[dst_index] + update) / 2 def min_func(dst_ptr, dst_index, update): dst_ptr[dst_index] = tir.min(dst_ptr[dst_index], update) def max_func(dst_ptr, dst_index, update): dst_ptr[dst_index] = tir.max(dst_ptr[dst_index], update) reduce_func = None if reduction == "update": reduce_func = update_func elif reduction == "add": reduce_func = add_func elif reduction == "mul": reduce_func = mul_func elif reduction == "mean": reduce_func = mean_func elif reduction == "min": reduce_func = min_func elif reduction == "max": reduce_func = max_func else: raise NotImplementedError( "scatter_elements reduction not in [update, add, mul, mean, min, max]:", reduction ) out_buf = tir.decl_buffer(data.shape, data.dtype, "out_buf") return te.extern( [data.shape], [data, indices, updates], lambda ins, outs: gen_ir(ins[0], ins[1], ins[2], outs[0], reduce_func), dtype=data.dtype, out_buffers=[out_buf], name="scatter_elements.generic", tag="scatter_elements.generic", )