tvm.topi.nn.bnn 源代码

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
"""Binary Neural Network (BNN) Operators"""
from __future__ import absolute_import as _abs
import tvm
from tvm import te
from .. import tag
from ..utils import simplify, get_const_int


[文档] def binarize_pack(data, axis=None, name="PackedInput"): """Binarization and bit-packing along a certain axis. Parameters ---------- data : tvm.te.Tensor n-D input, can be any layout. axis : None or int The axis along which to do binarization and bit-packing, default is the last axis. name : str, optional The name prefix operators generate. Returns ------- output : tvm.te.Tensor n-D, the same layout as input, dtype is uint32. """ ishape = data.shape if axis is None: axis = len(ishape) - 1 assert get_const_int(ishape[axis]) % 32 == 0 n = len(ishape) oshape = tuple(simplify(ishape[i] // 32) if i == axis else ishape[i] for i in range(n)) def _binarize_pack(*indices): start_idx = [indices[i] * 32 if i == axis else indices[i] for i in range(n)] packed = tvm.tir.const(0, "uint32") for j in range(32): idx = [start_idx[i] + j if i == axis else start_idx[i] for i in range(n)] sign = (data(*idx) >= 0).astype("uint32") packed = packed | sign if j == 31: return packed packed = packed << 1 raise RuntimeError("not resach") return te.compute(oshape, _binarize_pack, name=name, tag="binarize_pack")
[文档] def binary_dense(data, weight): """Binary matrix multiplication using xor and bit-count. Parameters ---------- data : tvm.te.Tensor 2-D with shape [batch, in_dim], dtype is uint32. weight : tvm.te.Tensor 2-D with shape [out_dim, in_dim], dtype is uint32. Returns ------- output : tvm.te.Tensor 2-D with shape [batch, out_dim], dtype is float32. """ assert ( data.dtype == "uint32" and weight.dtype == "uint32" ), "dtype of data and weight should be uint32" assert len(data.shape) == 2 and len(weight.shape) == 2, "only support 2-dim binary dense" batch, in_dim = data.shape out_dim, _ = weight.shape k = te.reduce_axis((0, in_dim), name="k") matmul = te.compute( (batch, out_dim), lambda i, j: te.sum(tvm.tir.popcount(data[i, k] ^ weight[j, k]), axis=k), tag="binary_dense", ) return te.compute( (batch, out_dim), lambda i, j: 32 * in_dim - 2.0 * matmul(i, j), tag=tag.ELEMWISE )