# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""An execution trace of a scheduling program"""
import os
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional
from tvm._ffi import register_object as _register_object
from tvm.runtime import Object
from ...ir import Array, Map, save_json
from ...runtime import String
from ..expr import FloatImm, IntImm
from ..function import IndexMap
from . import _ffi_api
from .instruction import ATTR_TYPE, INPUT_RV_TYPE, Instruction
if TYPE_CHECKING:
from .schedule import Schedule
DECISION_TYPE = Any
JSON_TYPE = Any
def _json_from_tvm(obj):
if obj is None:
return None
elif isinstance(obj, (bool, int, float, str)):
return obj
elif isinstance(obj, Array):
return [_json_from_tvm(i) for i in obj]
elif isinstance(obj, Map):
return {_json_from_tvm(k): _json_from_tvm(v) for k, v in obj.items()}
elif isinstance(obj, String):
return str(obj)
elif isinstance(obj, (IntImm, FloatImm)):
return obj.value
elif isinstance(obj, IndexMap):
return save_json(obj)
else:
raise TypeError("Not supported type: " + str(type(obj)))
[文档]
@_register_object("tir.Trace")
class Trace(Object):
"""An execution trace of a scheduling program.
A trace has two parts:
1) The instructions invoked so far
2) The random decisions made upon those instructions, if any
A trace can be serialized to:
1) Roundtrippable JSON format: can be saved to file and loaded back
2) Python syntax: allows users to copy-paste the trace to reproduce the scheduling process
A trace can be applied to a TensorIR schedule by re-applying all its instructions possibly with
their decisions accordingly. Re-sampling is invoked if a sampling instruction doesn't have its
corresponding decision; Otherwise the existing decision will be reused accordingly.
Attributes
----------
insts : List[Instruction]
The instructions invoked so far in the program execution
decisions : Dict[Instruction, DECISION_TYPE]
The random decisions made upon those instructions
"""
insts: List[Instruction]
decisions: Dict[Instruction, DECISION_TYPE]
def __init__(
self,
insts: List[Instruction],
decisions: Dict[Instruction, DECISION_TYPE],
) -> None:
"""Constructor
Parameters
----------
insts : List[Instruction]
The instructions invoked so far in the program execution
decisions : Dict[Instruction, DECISION_TYPE]
The random decisions made upon those instructions
"""
self.__init_handle_by_constructor__(
_ffi_api.Trace, # type: ignore # pylint: disable=no-member
insts,
decisions,
)
[文档]
def get_decision(self, inst: Instruction) -> Optional[DECISION_TYPE]:
"""Retrieve the decision made on a specific instruction
Parameters
----------
insts : Instruction
The instruction whose decision is to be retrieved
Returns
-------
decision : Optional[DECISION_TYPE]
The corresponding decision; None if there is no decision made on the instruction
"""
return _ffi_api.TraceGetDecision(self, inst) # type: ignore # pylint: disable=no-member
[文档]
def append(
self,
inst: Instruction,
decision: Optional[DECISION_TYPE] = None,
) -> None:
"""Append a new instruction to the trace
Parameters
----------
insts : Instruction
The new instruction to be appended
decision : Optional[DECISION_TYPE] = None
The random decision made on this instruction
"""
_ffi_api.TraceAppend(self, inst, decision) # type: ignore # pylint: disable=no-member
[文档]
def pop(self) -> Optional[Instruction]:
"""Remove the last instruction, along with the decision made on that instruction, if any
Returns
-------
popped_inst : Instruction
Returns the instruction removed; NullOpt if the trace is empty
"""
return _ffi_api.TracePop(self) # type: ignore # pylint: disable=no-member
[文档]
def apply_to_schedule(
self,
sch: "Schedule",
remove_postproc: bool,
decision_provider: Optional[
Callable[
[Instruction, List[INPUT_RV_TYPE], List[ATTR_TYPE], DECISION_TYPE], DECISION_TYPE
]
] = None,
) -> None:
"""Apply the trace to a TensorIR schedule
Parameters
----------
sch : Schedule
The schedule to be applied onto
remove_postproc : bool
If postprocessing instructions are removed
decision_provider: Optional[Callable] = None
A callback that allows users to mutate decisions on the fly when applying instructions.
The signature of the callback is:
- The 1st argument: The instruction
- The 2nd argument: The input random variables
- The 3rd argument: The attributes
- The 4th argument: The decision
- Return: A new decision
"""
_ffi_api.TraceApplyToSchedule( # type: ignore # pylint: disable=no-member
self,
sch,
remove_postproc,
decision_provider,
)
[文档]
def as_json(self, remove_postproc: bool = False) -> JSON_TYPE:
"""Serialize the trace as a JSON-style object
Parameters
----------
remove_postproc : bool = False
If postprocessing instructions are removed
Returns
-------
json: JSON_TYPE
The JSON-style object
"""
obj = _ffi_api.TraceAsJSON(self, remove_postproc) # type: ignore # pylint: disable=no-member
return _json_from_tvm(obj)
[文档]
def as_python(self, remove_postproc: bool = False) -> List[str]:
"""Serialize the trace as a sequence of python statements
Parameters
----------
remove_postproc : bool = False
If postprocessing instructions are removed
Returns
-------
py_stmts: List[str]
A sequence of python statements
"""
return _ffi_api.TraceAsPython(self, remove_postproc) # type: ignore # pylint: disable=no-member
[文档]
def with_decision(
self,
inst: Instruction,
decision: DECISION_TYPE,
remove_postproc: bool,
) -> "Trace":
"""Create a new trace with an instruction whose decision is changed,
assuming this instruction exists in the resulting trace
Parameters
----------
inst : Instruction
The instruction whose decision is to be changed
decision : DECISION_TYPE
The decision to be changed to
remove_postproc : bool
If postprocessing instructions are removed
Returns
-------
trace: Trace
The new trace with the decision changed
"""
return _ffi_api.TraceWithDecision( # type: ignore # pylint: disable=no-member
self,
inst,
decision,
remove_postproc,
)
[文档]
def simplified(self, remove_postproc: bool) -> "Trace":
"""Simplify the trace with dead-code elimination
Parameters
----------
remove_postproc : bool
If postprocessing instructions are removed
Returns
-------
trace: Trace
A simplified trace
"""
return _ffi_api.TraceSimplified(self, remove_postproc) # type: ignore # pylint: disable=no-member
[文档]
@staticmethod
def apply_json_to_schedule(json_obj: JSON_TYPE, sch: "Schedule") -> None:
"""Apply a JSON-serialized trace to a TensorIR schedule
Parameters
----------
json_obj : JSON_TYPE
The JSON-serialized trace
sch : Schedule
The TensorIR schedule
"""
_ffi_api.TraceApplyJSONToSchedule(json_obj, sch) # type: ignore # pylint: disable=no-member
[文档]
def show(self, style: Optional[str] = None, black_format: bool = False) -> None:
"""A sugar for print highlighted TVM script.
Parameters
----------
style : str, optional
Pygmentize printing style, auto-detected if None. See
`tvm.script.highlight.cprint` for more details.
black_format: bool
If true, use the formatter Black to format the TVMScript.
If None, determine based on the "TVM_BLACK_FORMAT" environment
variable.
"""
from tvm.script.highlight import ( # pylint: disable=import-outside-toplevel
cprint,
)
if black_format is None:
env = os.environ.get("TVM_BLACK_FORMAT")
black_format = bool(env and int(env))
cprint(str(self), style=style, black_format=black_format)