fn (%input.1: Tensor[(1, 3, 128, 128), float32] /* ty=Tensor[(1, 3, 128, 128), float32] span=Conv_9.input.1:0:0 */) -> Tensor[(1, 48, 64, 64), float32] {
%0 = nn.conv2d(%input.1, meta[relay.Constant][0] /* ty=Tensor[(32, 3, 3, 3), float32] span=Conv_9.conv_in.weight:0:0 */, padding=[1, 1, 1, 1], channels=32, kernel_size=[3, 3]) /* ty=Tensor[(1, 32, 128, 128), float32] span=Conv_9:0:0 */;
%1 = nn.conv2d(%0, meta[relay.Constant][1] /* ty=Tensor[(32, 1, 1, 3), float32] span=Conv_10.body.0.body.0.dau_top.body.0.weight:0:0 */, padding=[0, 1, 0, 1], groups=32, channels=32, kernel_size=[1, 3]) /* ty=Tensor[(1, 32, 128, 128), float32] span=Conv_10:0:0 */;
%2 = nn.conv2d(%1, meta[relay.Constant][2] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_11.body.0.body.0.dau_top.body.1.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 128, 128), float32] span=Conv_11:0:0 */;
%3 = broadcast_to_like(meta[relay.Constant][3] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_12.onnx::PRelu_175:0:0 */, %2) /* ty=Tensor[(1, 32, 128, 128), float32] span=PRelu_12:0:0 */;
%4 = reshape(%2, newshape=[-1]) /* ty=Tensor[(524288), float32] span=PRelu_12:0:0 */;
%5 = reshape(%3, newshape=[-1]) /* ty=Tensor[(524288), float32] span=PRelu_12:0:0 */;
%6 = nn.prelu(%4, %5, axis=0) /* ty=Tensor[(524288), float32] span=PRelu_12:0:0 */;
%7 = reshape(%6, newshape=[1, 32, 128, 128]) /* ty=Tensor[(1, 32, 128, 128), float32] span=PRelu_12:0:0 */;
%8 = nn.conv2d(%7, meta[relay.Constant][4] /* ty=Tensor[(32, 1, 1, 3), float32] span=Conv_13.body.0.body.0.dau_top.body.3.weight:0:0 */, padding=[0, 1, 0, 1], groups=32, channels=32, kernel_size=[1, 3]) /* ty=Tensor[(1, 32, 128, 128), float32] span=Conv_13:0:0 */;
%9 = nn.conv2d(%8, meta[relay.Constant][5] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_14.body.0.body.0.dau_top.body.4.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 128, 128), float32] span=Conv_14:0:0 */;
%10 = nn.global_avg_pool2d(%9) /* ty=Tensor[(1, 32, 1, 1), float32] span=GlobalAveragePool_15:0:0 */;
%11 = nn.conv2d(%10, meta[relay.Constant][6] /* ty=Tensor[(2, 32, 1, 1), float32] span=Conv_16.body.0.body.0.dau_top.gcnet.se.1.weight:0:0 */, padding=[0, 0, 0, 0], channels=2, kernel_size=[1, 1]) /* ty=Tensor[(1, 2, 1, 1), float32] span=Conv_16:0:0 */;
%12 = broadcast_to_like(meta[relay.Constant][7] /* ty=Tensor[(2, 1, 1), float32] span=PRelu_17.onnx::PRelu_176:0:0 */, %11) /* ty=Tensor[(1, 2, 1, 1), float32] span=PRelu_17:0:0 */;
%13 = reshape(%11, newshape=[-1]) /* ty=Tensor[(2), float32] span=PRelu_17:0:0 */;
%14 = reshape(%12, newshape=[-1]) /* ty=Tensor[(2), float32] span=PRelu_17:0:0 */;
%15 = nn.prelu(%13, %14, axis=0) /* ty=Tensor[(2), float32] span=PRelu_17:0:0 */;
%16 = reshape(%15, newshape=[1, 2, 1, 1]) /* ty=Tensor[(1, 2, 1, 1), float32] span=PRelu_17:0:0 */;
%17 = nn.conv2d(%16, meta[relay.Constant][8] /* ty=Tensor[(32, 2, 1, 1), float32] span=Conv_18.body.0.body.0.dau_top.gcnet.se.3.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 1, 1), float32] span=Conv_18:0:0 */;
%18 = sigmoid(%17) /* ty=Tensor[(1, 32, 1, 1), float32] span=Sigmoid_19:0:0 */;
%19 = nn.conv2d(%18, meta[relay.Constant][9] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_20.body.0.body.0.dau_top.gcnet.channel_add_conv.0.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 1, 1), float32] span=Conv_20:0:0 */;
%20 = broadcast_to_like(meta[relay.Constant][10] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_21.onnx::PRelu_177:0:0 */, %19) /* ty=Tensor[(1, 32, 1, 1), float32] span=PRelu_21:0:0 */;
%21 = reshape(%19, newshape=[-1]) /* ty=Tensor[(32), float32] span=PRelu_21:0:0 */;
%22 = reshape(%20, newshape=[-1]) /* ty=Tensor[(32), float32] span=PRelu_21:0:0 */;
%23 = nn.prelu(%21, %22, axis=0) /* ty=Tensor[(32), float32] span=PRelu_21:0:0 */;
%24 = reshape(%23, newshape=[1, 32, 1, 1]) /* ty=Tensor[(1, 32, 1, 1), float32] span=PRelu_21:0:0 */;
%25 = nn.conv2d(%24, meta[relay.Constant][11] /* ty=Tensor[(32, 32, 1, 1), float32] span=Conv_22.body.0.body.0.dau_top.gcnet.channel_add_conv.2.weight:0:0 */, padding=[0, 0, 0, 0], channels=32, kernel_size=[1, 1]) /* ty=Tensor[(1, 32, 1, 1), float32] span=Conv_22:0:0 */;
%26 = add(%9, %25) /* ty=Tensor[(1, 32, 128, 128), float32] span=Add_23:0:0 */;
%27 = broadcast_to_like(meta[relay.Constant][3] /* ty=Tensor[(32, 1, 1), float32] span=PRelu_12.onnx::PRelu_175:0:0 */, %26) /* ty=Tensor[(1, 32, 128, 128), float32] span=PRelu_24:0:0 */;
%28 = reshape(%26, newshape=[-1]) /* ty=Tensor[(524288), float32] span=PRelu_24:0:0 */;
%29 = reshape(%27, newshape=[-1]) /* ty=Tensor[(524288), float32] span=PRelu_24:0:0 */;
%30 = nn.prelu(%28, %29, axis=0) /* ty=Tensor[(524288), float32] span=PRelu_24:0:0 */;
%31 = reshape(%30, newshape=[1, 32, 128, 128]) /* ty=Tensor[(1, 32, 128, 128), float32] span=PRelu_24:0:0 */;
%32 = add(%31, %0) /* ty=Tensor[(1, 32, 128, 128), float32] span=Add_25:0:0 */;
%33 = image.resize2d(%32, size=[64, 64], roi=[0f, 0f, 0f, 0f], method="nearest_neighbor", coordinate_transformation_mode="asymmetric", rounding_method="floor", cubic_alpha=-0.75f) /* ty=Tensor[(1, 32, 64, 64), float32] span=Resize_27:0:0 */;
%34 = multiply(4.01903f /* ty=float32 span=Mul_28.body.0.body.0.down2.0.alpha:0:0 */, %33) /* ty=Tensor[(1, 32, 64, 64), float32] span=Mul_28:0:0 */;
nn.conv2d(%34, meta[relay.Constant][12] /* ty=Tensor[(48, 32, 1, 1), float32] span=Conv_29.body.0.body.0.down2.1.weight:0:0 */, padding=[0, 0, 0, 0], channels=48, kernel_size=[1, 1]) /* ty=Tensor[(1, 48, 64, 64), float32] span=Conv_29:0:0 */
} /* ty=fn (Tensor[(1, 3, 128, 128), float32]) -> Tensor[(1, 48, 64, 64), float32] */