fn (%data: Tensor[(1, 3, 224, 224), float32] /* ty=Tensor[(1, 3, 224, 224), float32] span=aten::_convolution_0.data:0:0 */) -> Tensor[(1, 1000), float32] {
%0 = nn.conv2d(%data, meta[relay.Constant][0] /* ty=Tensor[(64, 3, 7, 7), float32] */, strides=[2, 2], padding=[3, 3, 3, 3], channels=64, kernel_size=[7, 7]) /* ty=Tensor[(1, 64, 112, 112), float32] */;
%1 = add(%0, meta[relay.Constant][1] /* ty=Tensor[(64, 1, 1), float32] */) /* ty=Tensor[(1, 64, 112, 112), float32] */;
%2 = nn.relu(%1) /* ty=Tensor[(1, 64, 112, 112), float32] span=aten::relu__0:0:0 */;
%3 = nn.max_pool2d(%2, pool_size=[3, 3], strides=[2, 2], padding=[1, 1, 1, 1]) /* ty=Tensor[(1, 64, 56, 56), float32] span=aten::max_pool2d_0:0:0 */;
%4 = nn.conv2d(%3, meta[relay.Constant][2] /* ty=Tensor[(64, 64, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%5 = add(%4, meta[relay.Constant][3] /* ty=Tensor[(64, 1, 1), float32] */) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%6 = nn.relu(%5) /* ty=Tensor[(1, 64, 56, 56), float32] span=aten::relu__1:0:0 */;
%7 = nn.conv2d(%6, meta[relay.Constant][4] /* ty=Tensor[(64, 64, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%8 = add(%7, meta[relay.Constant][5] /* ty=Tensor[(64, 1, 1), float32] */) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%9 = add(%8, %3) /* ty=Tensor[(1, 64, 56, 56), float32] span=aten::add__0:0:0 */;
%10 = nn.relu(%9) /* ty=Tensor[(1, 64, 56, 56), float32] span=aten::relu__2:0:0 */;
%11 = nn.conv2d(%10, meta[relay.Constant][6] /* ty=Tensor[(64, 64, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%12 = add(%11, meta[relay.Constant][7] /* ty=Tensor[(64, 1, 1), float32] */) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%13 = nn.relu(%12) /* ty=Tensor[(1, 64, 56, 56), float32] span=aten::relu__3:0:0 */;
%14 = nn.conv2d(%13, meta[relay.Constant][8] /* ty=Tensor[(64, 64, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%15 = add(%14, meta[relay.Constant][9] /* ty=Tensor[(64, 1, 1), float32] */) /* ty=Tensor[(1, 64, 56, 56), float32] */;
%16 = add(%15, %10) /* ty=Tensor[(1, 64, 56, 56), float32] span=aten::add__1:0:0 */;
%17 = nn.relu(%16) /* ty=Tensor[(1, 64, 56, 56), float32] span=aten::relu__4:0:0 */;
%18 = nn.conv2d(%17, meta[relay.Constant][10] /* ty=Tensor[(128, 64, 3, 3), float32] */, strides=[2, 2], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%19 = add(%18, meta[relay.Constant][11] /* ty=Tensor[(128, 1, 1), float32] */) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%20 = nn.relu(%19) /* ty=Tensor[(1, 128, 28, 28), float32] span=aten::relu__5:0:0 */;
%21 = nn.conv2d(%20, meta[relay.Constant][12] /* ty=Tensor[(128, 128, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%22 = nn.conv2d(%17, meta[relay.Constant][14] /* ty=Tensor[(128, 64, 1, 1), float32] */, strides=[2, 2], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%23 = add(%21, meta[relay.Constant][13] /* ty=Tensor[(128, 1, 1), float32] */) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%24 = add(%22, meta[relay.Constant][15] /* ty=Tensor[(128, 1, 1), float32] */) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%25 = add(%23, %24) /* ty=Tensor[(1, 128, 28, 28), float32] span=aten::add__2:0:0 */;
%26 = nn.relu(%25) /* ty=Tensor[(1, 128, 28, 28), float32] span=aten::relu__6:0:0 */;
%27 = nn.conv2d(%26, meta[relay.Constant][16] /* ty=Tensor[(128, 128, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%28 = add(%27, meta[relay.Constant][17] /* ty=Tensor[(128, 1, 1), float32] */) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%29 = nn.relu(%28) /* ty=Tensor[(1, 128, 28, 28), float32] span=aten::relu__7:0:0 */;
%30 = nn.conv2d(%29, meta[relay.Constant][18] /* ty=Tensor[(128, 128, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%31 = add(%30, meta[relay.Constant][19] /* ty=Tensor[(128, 1, 1), float32] */) /* ty=Tensor[(1, 128, 28, 28), float32] */;
%32 = add(%31, %26) /* ty=Tensor[(1, 128, 28, 28), float32] span=aten::add__3:0:0 */;
%33 = nn.relu(%32) /* ty=Tensor[(1, 128, 28, 28), float32] span=aten::relu__8:0:0 */;
%34 = nn.conv2d(%33, meta[relay.Constant][20] /* ty=Tensor[(256, 128, 3, 3), float32] */, strides=[2, 2], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%35 = add(%34, meta[relay.Constant][21] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%36 = nn.relu(%35) /* ty=Tensor[(1, 256, 14, 14), float32] span=aten::relu__9:0:0 */;
%37 = nn.conv2d(%36, meta[relay.Constant][22] /* ty=Tensor[(256, 256, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%38 = nn.conv2d(%33, meta[relay.Constant][24] /* ty=Tensor[(256, 128, 1, 1), float32] */, strides=[2, 2], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%39 = add(%37, meta[relay.Constant][23] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%40 = add(%38, meta[relay.Constant][25] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%41 = add(%39, %40) /* ty=Tensor[(1, 256, 14, 14), float32] span=aten::add__4:0:0 */;
%42 = nn.relu(%41) /* ty=Tensor[(1, 256, 14, 14), float32] span=aten::relu__10:0:0 */;
%43 = nn.conv2d(%42, meta[relay.Constant][26] /* ty=Tensor[(256, 256, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%44 = add(%43, meta[relay.Constant][27] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%45 = nn.relu(%44) /* ty=Tensor[(1, 256, 14, 14), float32] span=aten::relu__11:0:0 */;
%46 = nn.conv2d(%45, meta[relay.Constant][28] /* ty=Tensor[(256, 256, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%47 = add(%46, meta[relay.Constant][29] /* ty=Tensor[(256, 1, 1), float32] */) /* ty=Tensor[(1, 256, 14, 14), float32] */;
%48 = add(%47, %42) /* ty=Tensor[(1, 256, 14, 14), float32] span=aten::add__5:0:0 */;
%49 = nn.relu(%48) /* ty=Tensor[(1, 256, 14, 14), float32] span=aten::relu__12:0:0 */;
%50 = nn.conv2d(%49, meta[relay.Constant][30] /* ty=Tensor[(512, 256, 3, 3), float32] */, strides=[2, 2], padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%51 = add(%50, meta[relay.Constant][31] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%52 = nn.relu(%51) /* ty=Tensor[(1, 512, 7, 7), float32] span=aten::relu__13:0:0 */;
%53 = nn.conv2d(%52, meta[relay.Constant][32] /* ty=Tensor[(512, 512, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%54 = nn.conv2d(%49, meta[relay.Constant][34] /* ty=Tensor[(512, 256, 1, 1), float32] */, strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%55 = add(%53, meta[relay.Constant][33] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%56 = add(%54, meta[relay.Constant][35] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%57 = add(%55, %56) /* ty=Tensor[(1, 512, 7, 7), float32] span=aten::add__6:0:0 */;
%58 = nn.relu(%57) /* ty=Tensor[(1, 512, 7, 7), float32] span=aten::relu__14:0:0 */;
%59 = nn.conv2d(%58, meta[relay.Constant][36] /* ty=Tensor[(512, 512, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%60 = add(%59, meta[relay.Constant][37] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%61 = nn.relu(%60) /* ty=Tensor[(1, 512, 7, 7), float32] span=aten::relu__15:0:0 */;
%62 = nn.conv2d(%61, meta[relay.Constant][38] /* ty=Tensor[(512, 512, 3, 3), float32] */, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%63 = add(%62, meta[relay.Constant][39] /* ty=Tensor[(512, 1, 1), float32] */) /* ty=Tensor[(1, 512, 7, 7), float32] */;
%64 = add(%63, %58) /* ty=Tensor[(1, 512, 7, 7), float32] span=aten::add__7:0:0 */;
%65 = nn.relu(%64) /* ty=Tensor[(1, 512, 7, 7), float32] span=aten::relu__16:0:0 */;
%66 = nn.adaptive_avg_pool2d(%65, output_size=[1, 1]) /* ty=Tensor[(1, 512, 1, 1), float32] span=aten::adaptive_avg_pool2d_0:0:0 */;
%67 = reshape(%66, newshape=[0, -1, 1, 1]) /* ty=Tensor[(1, 512, 1, 1), float32] span=aten::flatten_0:0:0 */;
%68 = squeeze(%67, axis=[2, 3]) /* ty=Tensor[(1, 512), float32] span=aten::flatten_0:0:0 */;
%69 = nn.dense(%68, meta[relay.Constant][40] /* ty=Tensor[(1000, 512), float32] */, units=None) /* ty=Tensor[(1, 1000), float32] span=aten::linear_0:0:0 */;
add(%69, meta[relay.Constant][41] /* ty=Tensor[(1000), float32] */) /* ty=Tensor[(1, 1000), float32] */
} /* ty=fn (Tensor[(1, 3, 224, 224), float32]) -> Tensor[(1, 1000), float32] */