def @main (% images: Tensor[(1 , 3 , 384 , 640 ), float32] /* ty= Tensor[(1 , 3 , 384 , 640 ), float32] span= Conv_0. images:0 :0 */ ) -> Tensor[(1 , 84 , 5040 ), float32] {
% 0 = nn. conv2d(% images, meta[relay. Constant][1 ] /* ty= Tensor[(16 , 3 , 6 , 6 ), float32] span= Conv_0. model.0 . conv. weight:0 :0 */ , strides= [2 , 2 ], padding= [2 , 2 , 2 , 2 ], channels= 16 , kernel_size= [6 , 6 ]) /* ty= Tensor[(1 , 16 , 192 , 320 ), float32] span= Conv_0:0 :0 */ ;
% 1 = nn. bias_add(% 0 , meta[relay. Constant][2 ] /* ty= Tensor[(16 ), float32] span= Conv_0. model.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 16 , 192 , 320 ), float32] span= Conv_0:0 :0 */ ;
% 2 = nn. relu(% 1 ) /* ty= Tensor[(1 , 16 , 192 , 320 ), float32] span= Relu_1:0 :0 */ ;
% 3 = nn. conv2d(% 2 , meta[relay. Constant][3 ] /* ty= Tensor[(32 , 16 , 3 , 3 ), float32] span= Conv_2. model.1 . conv. weight:0 :0 */ , strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], channels= 32 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 32 , 96 , 160 ), float32] span= Conv_2:0 :0 */ ;
% 4 = nn. bias_add(% 3 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 96 , 160 ), float32] span= Conv_2:0 :0 */ ;
% 5 = nn. relu(% 4 ) /* ty= Tensor[(1 , 32 , 96 , 160 ), float32] span= Relu_3:0 :0 */ ;
% 6 = nn. conv2d(% 5 , meta[relay. Constant][5 ] /* ty= Tensor[(16 , 32 , 1 , 1 ), float32] span= Conv_4. model.2 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 16 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_4:0 :0 */ ;
% 7 = nn. bias_add(% 6 , meta[relay. Constant][2 ] /* ty= Tensor[(16 ), float32] span= Conv_0. model.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_4:0 :0 */ ;
% 8 = nn. relu(% 7 ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Relu_5:0 :0 */ ;
% 9 = nn. conv2d(% 8 , meta[relay. Constant][6 ] /* ty= Tensor[(16 , 16 , 1 , 1 ), float32] span= Conv_6. model.2 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 16 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_6:0 :0 */ ;
% 10 = nn. bias_add(% 9 , meta[relay. Constant][2 ] /* ty= Tensor[(16 ), float32] span= Conv_0. model.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_6:0 :0 */ ;
% 11 = nn. relu(% 10 ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Relu_7:0 :0 */ ;
% 12 = nn. conv2d(% 11 , meta[relay. Constant][7 ] /* ty= Tensor[(16 , 16 , 3 , 3 ), float32] span= Conv_8. model.2 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 16 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_8:0 :0 */ ;
% 13 = nn. bias_add(% 12 , meta[relay. Constant][2 ] /* ty= Tensor[(16 ), float32] span= Conv_0. model.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_8:0 :0 */ ;
% 14 = nn. relu(% 13 ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Relu_9:0 :0 */ ;
% 15 = nn. conv2d(% 5 , meta[relay. Constant][8 ] /* ty= Tensor[(16 , 32 , 1 , 1 ), float32] span= Conv_11. model.2 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 16 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_11:0 :0 */ ;
% 16 = nn. bias_add(% 15 , meta[relay. Constant][2 ] /* ty= Tensor[(16 ), float32] span= Conv_0. model.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Conv_11:0 :0 */ ;
% 17 = add(% 8 , % 14 ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Add_10:0 :0 */ ;
% 18 = nn. relu(% 16 ) /* ty= Tensor[(1 , 16 , 96 , 160 ), float32] span= Relu_12:0 :0 */ ;
% 19 = (% 17 , % 18 ) /* ty= (Tensor[(1 , 16 , 96 , 160 ), float32], Tensor[(1 , 16 , 96 , 160 ), float32]) span= Concat_13:0 :0 */ ;
% 20 = concatenate(% 19 , axis= 1 ) /* ty= Tensor[(1 , 32 , 96 , 160 ), float32] span= Concat_13:0 :0 */ ;
% 21 = nn. conv2d(% 20 , meta[relay. Constant][9 ] /* ty= Tensor[(32 , 32 , 1 , 1 ), float32] span= Conv_14. model.2 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 96 , 160 ), float32] span= Conv_14:0 :0 */ ;
% 22 = nn. bias_add(% 21 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 96 , 160 ), float32] span= Conv_14:0 :0 */ ;
% 23 = nn. relu(% 22 ) /* ty= Tensor[(1 , 32 , 96 , 160 ), float32] span= Relu_15:0 :0 */ ;
% 24 = nn. conv2d(% 23 , meta[relay. Constant][10 ] /* ty= Tensor[(64 , 32 , 3 , 3 ), float32] span= Conv_16. model.3 . conv. weight:0 :0 */ , strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_16:0 :0 */ ;
% 25 = nn. bias_add(% 24 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_16:0 :0 */ ;
% 26 = nn. relu(% 25 ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Relu_17:0 :0 */ ;
% 27 = nn. conv2d(% 26 , meta[relay. Constant][12 ] /* ty= Tensor[(32 , 64 , 1 , 1 ), float32] span= Conv_18. model.4 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_18:0 :0 */ ;
% 28 = nn. bias_add(% 27 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_18:0 :0 */ ;
% 29 = nn. relu(% 28 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_19:0 :0 */ ;
% 30 = nn. conv2d(% 29 , meta[relay. Constant][13 ] /* ty= Tensor[(32 , 32 , 1 , 1 ), float32] span= Conv_20. model.4 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_20:0 :0 */ ;
% 31 = nn. bias_add(% 30 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_20:0 :0 */ ;
% 32 = nn. relu(% 31 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_21:0 :0 */ ;
% 33 = nn. conv2d(% 32 , meta[relay. Constant][14 ] /* ty= Tensor[(32 , 32 , 3 , 3 ), float32] span= Conv_22. model.4 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 32 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_22:0 :0 */ ;
% 34 = nn. bias_add(% 33 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_22:0 :0 */ ;
% 35 = nn. relu(% 34 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_23:0 :0 */ ;
% 36 = add(% 29 , % 35 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Add_24:0 :0 */ ;
% 37 = nn. conv2d(% 36 , meta[relay. Constant][15 ] /* ty= Tensor[(32 , 32 , 1 , 1 ), float32] span= Conv_25. model.4 . m.1 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_25:0 :0 */ ;
% 38 = nn. bias_add(% 37 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_25:0 :0 */ ;
% 39 = nn. relu(% 38 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_26:0 :0 */ ;
% 40 = nn. conv2d(% 39 , meta[relay. Constant][16 ] /* ty= Tensor[(32 , 32 , 3 , 3 ), float32] span= Conv_27. model.4 . m.1 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 32 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_27:0 :0 */ ;
% 41 = nn. bias_add(% 40 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_27:0 :0 */ ;
% 42 = nn. relu(% 41 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_28:0 :0 */ ;
% 43 = nn. conv2d(% 26 , meta[relay. Constant][17 ] /* ty= Tensor[(32 , 64 , 1 , 1 ), float32] span= Conv_30. model.4 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_30:0 :0 */ ;
% 44 = nn. bias_add(% 43 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_30:0 :0 */ ;
% 45 = add(% 36 , % 42 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Add_29:0 :0 */ ;
% 46 = nn. relu(% 44 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_31:0 :0 */ ;
% 47 = (% 45 , % 46 ) /* ty= (Tensor[(1 , 32 , 48 , 80 ), float32], Tensor[(1 , 32 , 48 , 80 ), float32]) span= Concat_32:0 :0 */ ;
% 48 = concatenate(% 47 , axis= 1 ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Concat_32:0 :0 */ ;
% 49 = nn. conv2d(% 48 , meta[relay. Constant][18 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_33. model.4 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_33:0 :0 */ ;
% 50 = nn. bias_add(% 49 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_33:0 :0 */ ;
% 51 = nn. relu(% 50 ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Relu_34:0 :0 */ ;
% 52 = nn. conv2d(% 51 , meta[relay. Constant][19 ] /* ty= Tensor[(128 , 64 , 3 , 3 ), float32] span= Conv_35. model.5 . conv. weight:0 :0 */ , strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], channels= 128 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_35:0 :0 */ ;
% 53 = nn. bias_add(% 52 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_35:0 :0 */ ;
% 54 = nn. relu(% 53 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Relu_36:0 :0 */ ;
% 55 = nn. conv2d(% 54 , meta[relay. Constant][21 ] /* ty= Tensor[(64 , 128 , 1 , 1 ), float32] span= Conv_37. model.6 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_37:0 :0 */ ;
% 56 = nn. bias_add(% 55 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_37:0 :0 */ ;
% 57 = nn. relu(% 56 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_38:0 :0 */ ;
% 58 = nn. conv2d(% 57 , meta[relay. Constant][22 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_39. model.6 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_39:0 :0 */ ;
% 59 = nn. bias_add(% 58 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_39:0 :0 */ ;
% 60 = nn. relu(% 59 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_40:0 :0 */ ;
% 61 = nn. conv2d(% 60 , meta[relay. Constant][23 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_41. model.6 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_41:0 :0 */ ;
% 62 = nn. bias_add(% 61 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_41:0 :0 */ ;
% 63 = nn. relu(% 62 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_42:0 :0 */ ;
% 64 = add(% 57 , % 63 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Add_43:0 :0 */ ;
% 65 = nn. conv2d(% 64 , meta[relay. Constant][24 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_44. model.6 . m.1 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_44:0 :0 */ ;
% 66 = nn. bias_add(% 65 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_44:0 :0 */ ;
% 67 = nn. relu(% 66 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_45:0 :0 */ ;
% 68 = nn. conv2d(% 67 , meta[relay. Constant][25 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_46. model.6 . m.1 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_46:0 :0 */ ;
% 69 = nn. bias_add(% 68 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_46:0 :0 */ ;
% 70 = nn. relu(% 69 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_47:0 :0 */ ;
% 71 = add(% 64 , % 70 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Add_48:0 :0 */ ;
% 72 = nn. conv2d(% 71 , meta[relay. Constant][26 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_49. model.6 . m.2 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_49:0 :0 */ ;
% 73 = nn. bias_add(% 72 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_49:0 :0 */ ;
% 74 = nn. relu(% 73 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_50:0 :0 */ ;
% 75 = nn. conv2d(% 74 , meta[relay. Constant][27 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_51. model.6 . m.2 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_51:0 :0 */ ;
% 76 = nn. bias_add(% 75 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_51:0 :0 */ ;
% 77 = nn. relu(% 76 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_52:0 :0 */ ;
% 78 = nn. conv2d(% 54 , meta[relay. Constant][28 ] /* ty= Tensor[(64 , 128 , 1 , 1 ), float32] span= Conv_54. model.6 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_54:0 :0 */ ;
% 79 = nn. bias_add(% 78 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_54:0 :0 */ ;
% 80 = add(% 71 , % 77 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Add_53:0 :0 */ ;
% 81 = nn. relu(% 79 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_55:0 :0 */ ;
% 82 = (% 80 , % 81 ) /* ty= (Tensor[(1 , 64 , 24 , 40 ), float32], Tensor[(1 , 64 , 24 , 40 ), float32]) span= Concat_56:0 :0 */ ;
% 83 = concatenate(% 82 , axis= 1 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Concat_56:0 :0 */ ;
% 84 = nn. conv2d(% 83 , meta[relay. Constant][29 ] /* ty= Tensor[(128 , 128 , 1 , 1 ), float32] span= Conv_57. model.6 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_57:0 :0 */ ;
% 85 = nn. bias_add(% 84 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_57:0 :0 */ ;
% 86 = nn. relu(% 85 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Relu_58:0 :0 */ ;
% 87 = nn. conv2d(% 86 , meta[relay. Constant][30 ] /* ty= Tensor[(256 , 128 , 3 , 3 ), float32] span= Conv_59. model.7 . conv. weight:0 :0 */ , strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], channels= 256 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_59:0 :0 */ ;
% 88 = nn. bias_add(% 87 , meta[relay. Constant][31 ] /* ty= Tensor[(256 ), float32] span= Conv_59. model.7 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_59:0 :0 */ ;
% 89 = nn. relu(% 88 ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Relu_60:0 :0 */ ;
% 90 = nn. conv2d(% 89 , meta[relay. Constant][32 ] /* ty= Tensor[(128 , 256 , 1 , 1 ), float32] span= Conv_61. model.8 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_61:0 :0 */ ;
% 91 = nn. bias_add(% 90 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_61:0 :0 */ ;
% 92 = nn. relu(% 91 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_62:0 :0 */ ;
% 93 = nn. conv2d(% 92 , meta[relay. Constant][33 ] /* ty= Tensor[(128 , 128 , 1 , 1 ), float32] span= Conv_63. model.8 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_63:0 :0 */ ;
% 94 = nn. bias_add(% 93 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_63:0 :0 */ ;
% 95 = nn. relu(% 94 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_64:0 :0 */ ;
% 96 = nn. conv2d(% 95 , meta[relay. Constant][34 ] /* ty= Tensor[(128 , 128 , 3 , 3 ), float32] span= Conv_65. model.8 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 128 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_65:0 :0 */ ;
% 97 = nn. bias_add(% 96 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_65:0 :0 */ ;
% 98 = nn. relu(% 97 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_66:0 :0 */ ;
% 99 = nn. conv2d(% 89 , meta[relay. Constant][35 ] /* ty= Tensor[(128 , 256 , 1 , 1 ), float32] span= Conv_68. model.8 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_68:0 :0 */ ;
% 100 = nn. bias_add(% 99 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_68:0 :0 */ ;
% 101 = add(% 92 , % 98 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Add_67:0 :0 */ ;
% 102 = nn. relu(% 100 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_69:0 :0 */ ;
% 103 = (% 101 , % 102 ) /* ty= (Tensor[(1 , 128 , 12 , 20 ), float32], Tensor[(1 , 128 , 12 , 20 ), float32]) span= Concat_70:0 :0 */ ;
% 104 = concatenate(% 103 , axis= 1 ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Concat_70:0 :0 */ ;
% 105 = nn. conv2d(% 104 , meta[relay. Constant][36 ] /* ty= Tensor[(256 , 256 , 1 , 1 ), float32] span= Conv_71. model.8 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 256 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_71:0 :0 */ ;
% 106 = nn. bias_add(% 105 , meta[relay. Constant][31 ] /* ty= Tensor[(256 ), float32] span= Conv_59. model.7 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_71:0 :0 */ ;
% 107 = nn. relu(% 106 ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Relu_72:0 :0 */ ;
% 108 = nn. conv2d(% 107 , meta[relay. Constant][37 ] /* ty= Tensor[(128 , 256 , 1 , 1 ), float32] span= Conv_73. model.9 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_73:0 :0 */ ;
% 109 = nn. bias_add(% 108 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_73:0 :0 */ ;
% 110 = nn. relu(% 109 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_74:0 :0 */ ;
% 111 = nn. max_pool2d(% 110 , pool_size= [5 , 5 ], padding= [2 , 2 , 2 , 2 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= MaxPool_75:0 :0 */ ;
% 112 = nn. max_pool2d(% 111 , pool_size= [5 , 5 ], padding= [2 , 2 , 2 , 2 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= MaxPool_76:0 :0 */ ;
% 113 = nn. max_pool2d(% 112 , pool_size= [5 , 5 ], padding= [2 , 2 , 2 , 2 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= MaxPool_77:0 :0 */ ;
% 114 = (% 110 , % 111 , % 112 , % 113 ) /* ty= (Tensor[(1 , 128 , 12 , 20 ), float32], Tensor[(1 , 128 , 12 , 20 ), float32], Tensor[(1 , 128 , 12 , 20 ), float32], Tensor[(1 , 128 , 12 , 20 ), float32]) span= Concat_78:0 :0 */ ;
% 115 = concatenate(% 114 , axis= 1 ) /* ty= Tensor[(1 , 512 , 12 , 20 ), float32] span= Concat_78:0 :0 */ ;
% 116 = nn. conv2d(% 115 , meta[relay. Constant][38 ] /* ty= Tensor[(256 , 512 , 1 , 1 ), float32] span= Conv_79. model.9 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 256 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_79:0 :0 */ ;
% 117 = nn. bias_add(% 116 , meta[relay. Constant][31 ] /* ty= Tensor[(256 ), float32] span= Conv_59. model.7 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_79:0 :0 */ ;
% 118 = nn. relu(% 117 ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Relu_80:0 :0 */ ;
% 119 = nn. conv2d(% 118 , meta[relay. Constant][39 ] /* ty= Tensor[(128 , 256 , 1 , 1 ), float32] span= Conv_81. model.10 . conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_81:0 :0 */ ;
% 120 = nn. bias_add(% 119 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_81:0 :0 */ ;
% 121 = nn. relu(% 120 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_82:0 :0 */ ;
% 122 = image. resize2d(% 121 , size= [24 , 40 ], roi= [0 f, 0 f, 0 f, 0 f], method= "nearest_neighbor" , coordinate_transformation_mode= "asymmetric" , rounding_method= "floor" , cubic_alpha=- 0.75 f) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Resize_84:0 :0 */ ;
% 123 = (% 122 , % 86 ) /* ty= (Tensor[(1 , 128 , 24 , 40 ), float32], Tensor[(1 , 128 , 24 , 40 ), float32]) span= Concat_85:0 :0 */ ;
% 124 = concatenate(% 123 , axis= 1 ) /* ty= Tensor[(1 , 256 , 24 , 40 ), float32] span= Concat_85:0 :0 */ ;
% 125 = nn. conv2d(% 124 , meta[relay. Constant][40 ] /* ty= Tensor[(64 , 256 , 1 , 1 ), float32] span= Conv_86. model.13 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_86:0 :0 */ ;
% 126 = nn. bias_add(% 125 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_86:0 :0 */ ;
% 127 = nn. relu(% 126 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_87:0 :0 */ ;
% 128 = nn. conv2d(% 127 , meta[relay. Constant][41 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_88. model.13 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_88:0 :0 */ ;
% 129 = nn. bias_add(% 128 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_88:0 :0 */ ;
% 130 = nn. relu(% 129 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_89:0 :0 */ ;
% 131 = nn. conv2d(% 130 , meta[relay. Constant][42 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_90. model.13 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_90:0 :0 */ ;
% 132 = nn. bias_add(% 131 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_90:0 :0 */ ;
% 133 = nn. conv2d(% 124 , meta[relay. Constant][43 ] /* ty= Tensor[(64 , 256 , 1 , 1 ), float32] span= Conv_92. model.13 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_92:0 :0 */ ;
% 134 = nn. bias_add(% 133 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_92:0 :0 */ ;
% 135 = nn. relu(% 132 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_91:0 :0 */ ;
% 136 = nn. relu(% 134 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_93:0 :0 */ ;
% 137 = (% 135 , % 136 ) /* ty= (Tensor[(1 , 64 , 24 , 40 ), float32], Tensor[(1 , 64 , 24 , 40 ), float32]) span= Concat_94:0 :0 */ ;
% 138 = concatenate(% 137 , axis= 1 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Concat_94:0 :0 */ ;
% 139 = nn. conv2d(% 138 , meta[relay. Constant][44 ] /* ty= Tensor[(128 , 128 , 1 , 1 ), float32] span= Conv_95. model.13 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_95:0 :0 */ ;
% 140 = nn. bias_add(% 139 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_95:0 :0 */ ;
% 141 = nn. relu(% 140 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Relu_96:0 :0 */ ;
% 142 = nn. conv2d(% 141 , meta[relay. Constant][45 ] /* ty= Tensor[(64 , 128 , 1 , 1 ), float32] span= Conv_97. model.14 . conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_97:0 :0 */ ;
% 143 = nn. bias_add(% 142 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_97:0 :0 */ ;
% 144 = nn. relu(% 143 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_98:0 :0 */ ;
% 145 = image. resize2d(% 144 , size= [48 , 80 ], roi= [0 f, 0 f, 0 f, 0 f], method= "nearest_neighbor" , coordinate_transformation_mode= "asymmetric" , rounding_method= "floor" , cubic_alpha=- 0.75 f) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Resize_100:0 :0 */ ;
% 146 = (% 145 , % 51 ) /* ty= (Tensor[(1 , 64 , 48 , 80 ), float32], Tensor[(1 , 64 , 48 , 80 ), float32]) span= Concat_101:0 :0 */ ;
% 147 = concatenate(% 146 , axis= 1 ) /* ty= Tensor[(1 , 128 , 48 , 80 ), float32] span= Concat_101:0 :0 */ ;
% 148 = nn. conv2d(% 147 , meta[relay. Constant][46 ] /* ty= Tensor[(32 , 128 , 1 , 1 ), float32] span= Conv_102. model.17 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_102:0 :0 */ ;
% 149 = nn. bias_add(% 148 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_102:0 :0 */ ;
% 150 = nn. relu(% 149 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_103:0 :0 */ ;
% 151 = nn. conv2d(% 150 , meta[relay. Constant][47 ] /* ty= Tensor[(32 , 32 , 1 , 1 ), float32] span= Conv_104. model.17 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_104:0 :0 */ ;
% 152 = nn. bias_add(% 151 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_104:0 :0 */ ;
% 153 = nn. relu(% 152 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_105:0 :0 */ ;
% 154 = nn. conv2d(% 153 , meta[relay. Constant][48 ] /* ty= Tensor[(32 , 32 , 3 , 3 ), float32] span= Conv_106. model.17 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 32 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_106:0 :0 */ ;
% 155 = nn. bias_add(% 154 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_106:0 :0 */ ;
% 156 = nn. conv2d(% 147 , meta[relay. Constant][49 ] /* ty= Tensor[(32 , 128 , 1 , 1 ), float32] span= Conv_108. model.17 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 32 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_108:0 :0 */ ;
% 157 = nn. bias_add(% 156 , meta[relay. Constant][4 ] /* ty= Tensor[(32 ), float32] span= Conv_2. model.1 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Conv_108:0 :0 */ ;
% 158 = nn. relu(% 155 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_107:0 :0 */ ;
% 159 = nn. relu(% 157 ) /* ty= Tensor[(1 , 32 , 48 , 80 ), float32] span= Relu_109:0 :0 */ ;
% 160 = (% 158 , % 159 ) /* ty= (Tensor[(1 , 32 , 48 , 80 ), float32], Tensor[(1 , 32 , 48 , 80 ), float32]) span= Concat_110:0 :0 */ ;
% 161 = concatenate(% 160 , axis= 1 ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Concat_110:0 :0 */ ;
% 162 = nn. conv2d(% 161 , meta[relay. Constant][50 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_111. model.17 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_111:0 :0 */ ;
% 163 = nn. bias_add(% 162 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_111:0 :0 */ ;
% 164 = nn. relu(% 163 ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Relu_112:0 :0 */ ;
% 165 = nn. conv2d(% 164 , meta[relay. Constant][51 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_144. model.24 . cv2.0.0 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_144:0 :0 */ ;
% 166 = nn. bias_add(% 165 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_144:0 :0 */ ;
% 167 = nn. relu(% 166 ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Relu_145:0 :0 */ ;
% 168 = nn. conv2d(% 167 , meta[relay. Constant][52 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_146. model.24 . cv2.0.1 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_146:0 :0 */ ;
% 169 = nn. bias_add(% 168 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_146:0 :0 */ ;
% 170 = nn. relu(% 169 ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Relu_147:0 :0 */ ;
% 171 = nn. conv2d(% 170 , meta[relay. Constant][53 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_148. model.24 . cv2.0.2 . weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_148:0 :0 */ ;
% 172 = nn. conv2d(% 164 , meta[relay. Constant][55 ] /* ty= Tensor[(80 , 64 , 3 , 3 ), float32] span= Conv_149. model.24 . cv3.0.0 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 80 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Conv_149:0 :0 */ ;
% 173 = nn. bias_add(% 172 , meta[relay. Constant][56 ] /* ty= Tensor[(80 ), float32] span= Conv_149. model.24 . cv3.0.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Conv_149:0 :0 */ ;
% 174 = nn. relu(% 173 ) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Relu_150:0 :0 */ ;
% 175 = nn. conv2d(% 174 , meta[relay. Constant][57 ] /* ty= Tensor[(80 , 80 , 3 , 3 ), float32] span= Conv_151. model.24 . cv3.0.1 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 80 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Conv_151:0 :0 */ ;
% 176 = nn. bias_add(% 175 , meta[relay. Constant][56 ] /* ty= Tensor[(80 ), float32] span= Conv_149. model.24 . cv3.0.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Conv_151:0 :0 */ ;
% 177 = nn. relu(% 176 ) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Relu_152:0 :0 */ ;
% 178 = nn. conv2d(% 177 , meta[relay. Constant][58 ] /* ty= Tensor[(80 , 80 , 1 , 1 ), float32] span= Conv_153. model.24 . cv3.0.2 . weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 80 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Conv_153:0 :0 */ ;
% 179 = nn. bias_add(% 171 , meta[relay. Constant][54 ] /* ty= Tensor[(64 ), float32] span= Conv_148. model.24 . cv2.0.2 . bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 48 , 80 ), float32] span= Conv_148:0 :0 */ ;
% 180 = nn. bias_add(% 178 , meta[relay. Constant][59 ] /* ty= Tensor[(80 ), float32] span= Conv_153. model.24 . cv3.0.2 . bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 48 , 80 ), float32] span= Conv_153:0 :0 */ ;
% 181 = (% 179 , % 180 ) /* ty= (Tensor[(1 , 64 , 48 , 80 ), float32], Tensor[(1 , 80 , 48 , 80 ), float32]) span= Concat_154:0 :0 */ ;
% 182 = concatenate(% 181 , axis= 1 ) /* ty= Tensor[(1 , 144 , 48 , 80 ), float32] span= Concat_154:0 :0 */ ;
% 183 = nn. conv2d(% 164 , meta[relay. Constant][60 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_113. model.18 . conv. weight:0 :0 */ , strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_113:0 :0 */ ;
% 184 = nn. bias_add(% 183 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_113:0 :0 */ ;
% 185 = nn. relu(% 184 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_114:0 :0 */ ;
% 186 = (% 185 , % 144 ) /* ty= (Tensor[(1 , 64 , 24 , 40 ), float32], Tensor[(1 , 64 , 24 , 40 ), float32]) span= Concat_115:0 :0 */ ;
% 187 = concatenate(% 186 , axis= 1 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Concat_115:0 :0 */ ;
% 188 = nn. conv2d(% 187 , meta[relay. Constant][61 ] /* ty= Tensor[(64 , 128 , 1 , 1 ), float32] span= Conv_116. model.20 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_116:0 :0 */ ;
% 189 = nn. bias_add(% 188 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_116:0 :0 */ ;
% 190 = nn. relu(% 189 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_117:0 :0 */ ;
% 191 = nn. conv2d(% 190 , meta[relay. Constant][62 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_118. model.20 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_118:0 :0 */ ;
% 192 = nn. bias_add(% 191 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_118:0 :0 */ ;
% 193 = nn. relu(% 192 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_119:0 :0 */ ;
% 194 = nn. conv2d(% 193 , meta[relay. Constant][63 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_120. model.20 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_120:0 :0 */ ;
% 195 = nn. bias_add(% 194 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_120:0 :0 */ ;
% 196 = nn. conv2d(% 187 , meta[relay. Constant][64 ] /* ty= Tensor[(64 , 128 , 1 , 1 ), float32] span= Conv_122. model.20 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_122:0 :0 */ ;
% 197 = nn. bias_add(% 196 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_122:0 :0 */ ;
% 198 = nn. relu(% 195 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_121:0 :0 */ ;
% 199 = nn. relu(% 197 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_123:0 :0 */ ;
% 200 = (% 198 , % 199 ) /* ty= (Tensor[(1 , 64 , 24 , 40 ), float32], Tensor[(1 , 64 , 24 , 40 ), float32]) span= Concat_124:0 :0 */ ;
% 201 = concatenate(% 200 , axis= 1 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Concat_124:0 :0 */ ;
% 202 = nn. conv2d(% 201 , meta[relay. Constant][65 ] /* ty= Tensor[(128 , 128 , 1 , 1 ), float32] span= Conv_125. model.20 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_125:0 :0 */ ;
% 203 = nn. bias_add(% 202 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Conv_125:0 :0 */ ;
% 204 = nn. relu(% 203 ) /* ty= Tensor[(1 , 128 , 24 , 40 ), float32] span= Relu_126:0 :0 */ ;
% 205 = nn. conv2d(% 204 , meta[relay. Constant][66 ] /* ty= Tensor[(64 , 128 , 3 , 3 ), float32] span= Conv_155. model.24 . cv2.1.0 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_155:0 :0 */ ;
% 206 = nn. bias_add(% 205 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_155:0 :0 */ ;
% 207 = nn. relu(% 206 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_156:0 :0 */ ;
% 208 = nn. conv2d(% 207 , meta[relay. Constant][67 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_157. model.24 . cv2.1.1 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_157:0 :0 */ ;
% 209 = nn. bias_add(% 208 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_157:0 :0 */ ;
% 210 = nn. relu(% 209 ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Relu_158:0 :0 */ ;
% 211 = nn. conv2d(% 210 , meta[relay. Constant][68 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_159. model.24 . cv2.1.2 . weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_159:0 :0 */ ;
% 212 = nn. conv2d(% 204 , meta[relay. Constant][69 ] /* ty= Tensor[(80 , 128 , 3 , 3 ), float32] span= Conv_160. model.24 . cv3.1.0 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 80 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Conv_160:0 :0 */ ;
% 213 = nn. bias_add(% 212 , meta[relay. Constant][56 ] /* ty= Tensor[(80 ), float32] span= Conv_149. model.24 . cv3.0.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Conv_160:0 :0 */ ;
% 214 = nn. relu(% 213 ) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Relu_161:0 :0 */ ;
% 215 = nn. conv2d(% 214 , meta[relay. Constant][70 ] /* ty= Tensor[(80 , 80 , 3 , 3 ), float32] span= Conv_162. model.24 . cv3.1.1 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 80 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Conv_162:0 :0 */ ;
% 216 = nn. bias_add(% 215 , meta[relay. Constant][56 ] /* ty= Tensor[(80 ), float32] span= Conv_149. model.24 . cv3.0.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Conv_162:0 :0 */ ;
% 217 = nn. relu(% 216 ) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Relu_163:0 :0 */ ;
% 218 = nn. conv2d(% 217 , meta[relay. Constant][71 ] /* ty= Tensor[(80 , 80 , 1 , 1 ), float32] span= Conv_164. model.24 . cv3.1.2 . weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 80 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Conv_164:0 :0 */ ;
% 219 = nn. bias_add(% 211 , meta[relay. Constant][54 ] /* ty= Tensor[(64 ), float32] span= Conv_148. model.24 . cv2.0.2 . bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 24 , 40 ), float32] span= Conv_159:0 :0 */ ;
% 220 = nn. bias_add(% 218 , meta[relay. Constant][72 ] /* ty= Tensor[(80 ), float32] span= Conv_164. model.24 . cv3.1.2 . bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 24 , 40 ), float32] span= Conv_164:0 :0 */ ;
% 221 = (% 219 , % 220 ) /* ty= (Tensor[(1 , 64 , 24 , 40 ), float32], Tensor[(1 , 80 , 24 , 40 ), float32]) span= Concat_165:0 :0 */ ;
% 222 = concatenate(% 221 , axis= 1 ) /* ty= Tensor[(1 , 144 , 24 , 40 ), float32] span= Concat_165:0 :0 */ ;
% 223 = nn. conv2d(% 204 , meta[relay. Constant][73 ] /* ty= Tensor[(128 , 128 , 3 , 3 ), float32] span= Conv_127. model.21 . conv. weight:0 :0 */ , strides= [2 , 2 ], padding= [1 , 1 , 1 , 1 ], channels= 128 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_127:0 :0 */ ;
% 224 = nn. bias_add(% 223 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_127:0 :0 */ ;
% 225 = nn. relu(% 224 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_128:0 :0 */ ;
% 226 = (% 225 , % 121 ) /* ty= (Tensor[(1 , 128 , 12 , 20 ), float32], Tensor[(1 , 128 , 12 , 20 ), float32]) span= Concat_129:0 :0 */ ;
% 227 = concatenate(% 226 , axis= 1 ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Concat_129:0 :0 */ ;
% 228 = nn. conv2d(% 227 , meta[relay. Constant][74 ] /* ty= Tensor[(128 , 256 , 1 , 1 ), float32] span= Conv_130. model.23 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_130:0 :0 */ ;
% 229 = nn. bias_add(% 228 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_130:0 :0 */ ;
% 230 = nn. relu(% 229 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_131:0 :0 */ ;
% 231 = nn. conv2d(% 230 , meta[relay. Constant][75 ] /* ty= Tensor[(128 , 128 , 1 , 1 ), float32] span= Conv_132. model.23 . m.0 . cv1. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_132:0 :0 */ ;
% 232 = nn. bias_add(% 231 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_132:0 :0 */ ;
% 233 = nn. relu(% 232 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_133:0 :0 */ ;
% 234 = nn. conv2d(% 233 , meta[relay. Constant][76 ] /* ty= Tensor[(128 , 128 , 3 , 3 ), float32] span= Conv_134. model.23 . m.0 . cv2. conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 128 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_134:0 :0 */ ;
% 235 = nn. bias_add(% 234 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_134:0 :0 */ ;
% 236 = nn. conv2d(% 227 , meta[relay. Constant][77 ] /* ty= Tensor[(128 , 256 , 1 , 1 ), float32] span= Conv_136. model.23 . cv2. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 128 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_136:0 :0 */ ;
% 237 = nn. bias_add(% 236 , meta[relay. Constant][20 ] /* ty= Tensor[(128 ), float32] span= Conv_35. model.5 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Conv_136:0 :0 */ ;
% 238 = nn. relu(% 235 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_135:0 :0 */ ;
% 239 = nn. relu(% 237 ) /* ty= Tensor[(1 , 128 , 12 , 20 ), float32] span= Relu_137:0 :0 */ ;
% 240 = (% 238 , % 239 ) /* ty= (Tensor[(1 , 128 , 12 , 20 ), float32], Tensor[(1 , 128 , 12 , 20 ), float32]) span= Concat_138:0 :0 */ ;
% 241 = concatenate(% 240 , axis= 1 ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Concat_138:0 :0 */ ;
% 242 = nn. conv2d(% 241 , meta[relay. Constant][78 ] /* ty= Tensor[(256 , 256 , 1 , 1 ), float32] span= Conv_139. model.23 . cv3. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 256 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_139:0 :0 */ ;
% 243 = nn. bias_add(% 242 , meta[relay. Constant][31 ] /* ty= Tensor[(256 ), float32] span= Conv_59. model.7 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Conv_139:0 :0 */ ;
% 244 = nn. relu(% 243 ) /* ty= Tensor[(1 , 256 , 12 , 20 ), float32] span= Relu_140:0 :0 */ ;
% 245 = nn. conv2d(% 244 , meta[relay. Constant][79 ] /* ty= Tensor[(64 , 256 , 3 , 3 ), float32] span= Conv_166. model.24 . cv2.2.0 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Conv_166:0 :0 */ ;
% 246 = nn. bias_add(% 245 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Conv_166:0 :0 */ ;
% 247 = nn. relu(% 246 ) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Relu_167:0 :0 */ ;
% 248 = nn. conv2d(% 247 , meta[relay. Constant][80 ] /* ty= Tensor[(64 , 64 , 3 , 3 ), float32] span= Conv_168. model.24 . cv2.2.1 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 64 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Conv_168:0 :0 */ ;
% 249 = nn. bias_add(% 248 , meta[relay. Constant][11 ] /* ty= Tensor[(64 ), float32] span= Conv_16. model.3 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Conv_168:0 :0 */ ;
% 250 = nn. relu(% 249 ) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Relu_169:0 :0 */ ;
% 251 = nn. conv2d(% 250 , meta[relay. Constant][81 ] /* ty= Tensor[(64 , 64 , 1 , 1 ), float32] span= Conv_170. model.24 . cv2.2.2 . weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 64 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Conv_170:0 :0 */ ;
% 252 = nn. conv2d(% 244 , meta[relay. Constant][82 ] /* ty= Tensor[(80 , 256 , 3 , 3 ), float32] span= Conv_171. model.24 . cv3.2.0 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 80 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Conv_171:0 :0 */ ;
% 253 = nn. bias_add(% 252 , meta[relay. Constant][56 ] /* ty= Tensor[(80 ), float32] span= Conv_149. model.24 . cv3.0.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Conv_171:0 :0 */ ;
% 254 = nn. relu(% 253 ) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Relu_172:0 :0 */ ;
% 255 = nn. conv2d(% 254 , meta[relay. Constant][83 ] /* ty= Tensor[(80 , 80 , 3 , 3 ), float32] span= Conv_173. model.24 . cv3.2.1 . conv. weight:0 :0 */ , padding= [1 , 1 , 1 , 1 ], channels= 80 , kernel_size= [3 , 3 ]) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Conv_173:0 :0 */ ;
% 256 = nn. bias_add(% 255 , meta[relay. Constant][56 ] /* ty= Tensor[(80 ), float32] span= Conv_149. model.24 . cv3.0.0 . conv. bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Conv_173:0 :0 */ ;
% 257 = nn. relu(% 256 ) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Relu_174:0 :0 */ ;
% 258 = nn. conv2d(% 257 , meta[relay. Constant][84 ] /* ty= Tensor[(80 , 80 , 1 , 1 ), float32] span= Conv_175. model.24 . cv3.2.2 . weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 80 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Conv_175:0 :0 */ ;
% 259 = nn. bias_add(% 251 , meta[relay. Constant][54 ] /* ty= Tensor[(64 ), float32] span= Conv_148. model.24 . cv2.0.2 . bias:0 :0 */ ) /* ty= Tensor[(1 , 64 , 12 , 20 ), float32] span= Conv_170:0 :0 */ ;
% 260 = nn. bias_add(% 258 , meta[relay. Constant][85 ] /* ty= Tensor[(80 ), float32] span= Conv_175. model.24 . cv3.2.2 . bias:0 :0 */ ) /* ty= Tensor[(1 , 80 , 12 , 20 ), float32] span= Conv_175:0 :0 */ ;
% 261 = (% 259 , % 260 ) /* ty= (Tensor[(1 , 64 , 12 , 20 ), float32], Tensor[(1 , 80 , 12 , 20 ), float32]) span= Concat_176:0 :0 */ ;
% 262 = concatenate(% 261 , axis= 1 ) /* ty= Tensor[(1 , 144 , 12 , 20 ), float32] span= Concat_176:0 :0 */ ;
% 263 = reshape(% 182 , newshape= [1 , 144 , - 1 ]) /* ty= Tensor[(1 , 144 , 3840 ), float32] span= Reshape_309:0 :0 */ ;
% 264 = reshape(% 222 , newshape= [1 , 144 , - 1 ]) /* ty= Tensor[(1 , 144 , 960 ), float32] span= Reshape_312:0 :0 */ ;
% 265 = reshape(% 262 , newshape= [1 , 144 , - 1 ]) /* ty= Tensor[(1 , 144 , 240 ), float32] span= Reshape_315:0 :0 */ ;
% 266 = (% 263 , % 264 , % 265 ) /* ty= (Tensor[(1 , 144 , 3840 ), float32], Tensor[(1 , 144 , 960 ), float32], Tensor[(1 , 144 , 240 ), float32]) span= Concat_316:0 :0 */ ;
% 267 = concatenate(% 266 , axis= 2 ) /* ty= Tensor[(1 , 144 , 5040 ), float32] span= Concat_316:0 :0 */ ;
% 268 = split(% 267 , indices_or_sections= [64 ], axis= 1 ) /* ty= (Tensor[(1 , 64 , 5040 ), float32], Tensor[(1 , 80 , 5040 ), float32]) span= Split_317:0 :0 */ ;
% 269 = % 268.0 /* ty= Tensor[(1 , 64 , 5040 ), float32] span= Split_317:0 :0 */ ;
% 270 = reshape(% 269 , newshape= [1 , 4 , 16 , 5040 ]) /* ty= Tensor[(1 , 4 , 16 , 5040 ), float32] span= Reshape_327:0 :0 */ ;
% 271 = transpose(% 270 , axes= [0 , 3 , 1 , 2 ]) /* ty= Tensor[(1 , 5040 , 4 , 16 ), float32] span= Transpose_328:0 :0 */ ;
% 272 = nn. softmax(% 271 , axis= 3 ) /* ty= Tensor[(1 , 5040 , 4 , 16 ), float32] span= Softmax_329:0 :0 */ ;
% 273 = transpose(% 272 , axes= [0 , 3 , 2 , 1 ]) /* ty= Tensor[(1 , 16 , 4 , 5040 ), float32] span= Transpose_330:0 :0 */ ;
% 274 = nn. conv2d(% 273 , meta[relay. Constant][86 ] /* ty= Tensor[(1 , 16 , 1 , 1 ), float32] span= Conv_331. model.24 . dfl. conv. weight:0 :0 */ , padding= [0 , 0 , 0 , 0 ], channels= 1 , kernel_size= [1 , 1 ]) /* ty= Tensor[(1 , 1 , 4 , 5040 ), float32] span= Conv_331:0 :0 */ ;
% 275 = reshape(% 274 , newshape= [1 , 4 , 5040 ]) /* ty= Tensor[(1 , 4 , 5040 ), float32] span= Reshape_335:0 :0 */ ;
% 276 = strided_slice(% 275 , begin= [0 i64], end= [2 i64], strides= [1 i64], axes= [1 i64]) /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Slice_347:0 :0 */ ;
% 277 = strided_slice(% 275 , begin= [2 i64], end= [4 i64], strides= [1 i64], axes= [1 i64]) /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Slice_350:0 :0 */ ;
% 278 = subtract(meta[relay. Constant][0 ] /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Unsqueeze_336:0 :0 */ , % 276 ) /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Sub_351:0 :0 */ ;
% 279 = add(meta[relay. Constant][0 ] /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Unsqueeze_336:0 :0 */ , % 277 ) /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Add_352:0 :0 */ ;
% 280 = add(% 278 , % 279 ) /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Add_353:0 :0 */ ;
% 281 = divide(% 280 , 2 f /* ty= float32 span= Div_354.559 :0 :0 */ ) /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Div_354:0 :0 */ ;
% 282 = subtract(% 279 , % 278 ) /* ty= Tensor[(1 , 2 , 5040 ), float32] span= Sub_355:0 :0 */ ;
% 283 = (% 281 , % 282 ) /* ty= (Tensor[(1 , 2 , 5040 ), float32], Tensor[(1 , 2 , 5040 ), float32]) span= Concat_356:0 :0 */ ;
% 284 = concatenate(% 283 , axis= 1 ) /* ty= Tensor[(1 , 4 , 5040 ), float32] span= Concat_356:0 :0 */ ;
% 285 = % 268.1 /* ty= Tensor[(1 , 80 , 5040 ), float32] span= Split_317:0 :0 */ ;
% 286 = multiply(% 284 , meta[relay. Constant][87 ] /* ty= Tensor[(1 , 5040 ), float32] span= Transpose_306:0 :0 */ ) /* ty= Tensor[(1 , 4 , 5040 ), float32] span= Mul_357:0 :0 */ ;
% 287 = sigmoid(% 285 ) /* ty= Tensor[(1 , 80 , 5040 ), float32] span= Sigmoid_358:0 :0 */ ;
% 288 = (% 286 , % 287 ) /* ty= (Tensor[(1 , 4 , 5040 ), float32], Tensor[(1 , 80 , 5040 ), float32]) span= Concat_359:0 :0 */ ;
concatenate(% 288 , axis= 1 ) /* ty= Tensor[(1 , 84 , 5040 ), float32] span= Concat_359:0 :0 */
}
复制到剪贴板