defcheck_memory_plan(func,check_fn):# Build Modulemod=tvm.IRModule().from_expr(func)# Convert arguments.args=[]forparaminfunc.params:param=param.type_annotationsh=[int(sh)forshinparam.shape]data=np.random.rand(*sh).astype(param.dtype)args.append(tvm.nd.array(data))# TODO(mbs): Why does the executor need to be shared? Seems wrong.ex=relay.create_executor("vm",mod)# Compute without memory planning.no_plan_result=ex.evaluate()(*args)# Compute with memory planning.withtvm.transform.PassContext(opt_level=1,disabled_pass=["MemoryPlan"]):plan_result=ex.evaluate()(*args)# Compute Python result.py_res=check_fn(*[arg.numpy()forarginargs])# First check that the two VM results agree.np.testing.assert_allclose(no_plan_result.numpy(),plan_result.numpy())# Finally check that the results match the Python result.np.testing.assert_allclose(plan_result.numpy(),py_res)defstorage_type(mod):returnrelay.TypeCall(mod.get_global_type_var("Storage"),[])deftest_tyck_alloc_storage():mod=tvm.IRModule()mod.import_from_std("core.rly")deftest_tyck_alloc_tensor():mod=tvm.IRModule()mod.import_from_std("core.rly")sto=relay.Var("x",storage_type(mod))sh=relay.const(np.array([1,2]),dtype="int64")at=relay.op.memory.alloc_tensor(sto,relay.const(0,dtype="int64"),sh)mod["main"]=relay.Function([sto],at)relay.transform.InferType()(mod)defcheck_add(x):returnx+xdeftest_add():x=relay.var("x",shape=(2,))z=x+xfunc=relay.Function([x,],z,)check_memory_plan(func,check_add)defcheck_add_sub(x,y):z=x+xreturnz-ydeftest_add_sub():x=relay.var("x",shape=(10,))y=relay.var("y",shape=(10,))z=x+xz=z-yfunc=relay.Function([x,y],z)check_memory_plan(func,check_add_sub)defcheck_no_fuse(x,y,w):z=x+yreturnnp.matmul(z,np.transpose(w))deftest_no_fuse():x=relay.var("x",shape=(5,1))y=relay.var("y",shape=(5,1))w=relay.var("w",shape=(5,1))z=x+yout=relay.op.nn.dense(z,w)func=relay.Function([x,y,w],out)check_memory_plan(func,check_no_fuse)if__name__=="__main__":test_tyck_alloc_tensor()test_add()test_add_sub()