%%file {temp_dir}/cfg/models/yolo11-custom.yaml
# Ultralytics YOLO 🚀,采用 AGPL-3.0许可
# YOLOv11 目标检测模型,支持 P3-P5 的输出。使用示例请参阅 https://docs.ultralytics.com/tasks/detect
# 参数
nc: 80 # n类别数量
scales: # 模型复合缩放常数,即 `'model=yolo11n.yaml'` 会调用带有缩放因子 `'n'` 的 yolo11.yaml。
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
# - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
# - [-1, 2, C3k2, [256, False, 0.25]]
# - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
# - [-1, 2, C3k2, [512, False, 0.25]]
# - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
# - [-1, 2, C3k2, [512, True]]
# - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
# - [-1, 2, C3k2, [1024, True]]
# - [-1, 1, SPPF, [1024, 5]] # 9
# - [-1, 2, C2PSA, [1024]] # 10
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
# - [[-1, 6], 1, Concat, [1]] # cat backbone P4
# - [-1, 2, C3k2, [512, False]] # 13
# - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
# - [[-1, 4], 1, Concat, [1]] # cat backbone P3
# - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
# - [-1, 1, Conv, [256, 3, 2]]
# - [[-1, 13], 1, Concat, [1]] # cat head P4
# - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
# - [-1, 1, Conv, [512, 3, 2]]
# - [[-1, 10], 1, Concat, [1]] # cat head P5
# - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
# - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)