三角函数


1 基本公式

下面先介绍一些基本公式。

1.1 诱导公式

可以把 7 组诱导公式归结为 kπ2±αk\cdot \frac \pi 2 \pm \alphakZk\in \mathbb{Z})的三角函数,用“奇变偶不变,符号看象限”记忆和理解。即 kk 为奇数时的三角函数值等于 α\alpha 的异名(正弦与余弦互换,正切与余切互换)函数值,前面加上把 α\alpha 看成锐角时原函数值的符号;kk 为偶数时的三角函数值等于 α\alpha 的同名函数值,前面加上把 α\alpha 看成锐角时原函数值的符号。

1.3 同角三角函数式的基本关系

  1. 倒数关系:sinαcscα=1\sin{\alpha} \cdot \csc{\alpha}=1cosαsecα=1\cos{\alpha} \cdot \sec{\alpha}=1tanαcotα=1\tan{\alpha} \cdot \cot{\alpha}=1.
  2. 商数关系:tanα=sinαcosα\tan{\alpha} = \frac {\sin{\alpha}} {\cos{\alpha}}.
  3. 平方关系:sin2α+cos2α=1\sin^2{\alpha} + \cos^2{\alpha} = 11+tan2α=sec2α1 + \tan^2{\alpha} = \sec^2{\alpha}1+cot2α=csc2α1 + \cot^2{\alpha} = \csc^2{\alpha}.

1.4 周期性

y=Asin(ωx+φ)y=A\sin(\omega x + \varphi)y=Acos(ωx+φ)y=A\cos(\omega x + \varphi) 的最小正周期是 T=2πωT = \frac{2\pi}{|\omega|}

y=Atan(ωx+φ)y=A\tan(\omega x + \varphi)y=Acot(ωx+φ)y=A\cot(\omega x + \varphi) 的最小正周期是 T=πωT = \frac{\pi}{|\omega|}.

2 三角恒等式

  1. sin3α=4sinαsin(π3α)sin(π3+α)\sin{3\alpha} = 4\sin{\alpha} \sin(\frac{\pi} 3 - \alpha) \sin(\frac{\pi} 3 + \alpha)
  2. cos3α=4cosαcos(π3α)cos(π3+α)\cos{3\alpha} = 4\cos{\alpha} \cos(\frac{\pi} 3 - \alpha) \cos(\frac{\pi} 3 + \alpha)
  3. tan3α=4tanαtan(π3α)tan(π3+α)\tan{3\alpha} = 4\tan{\alpha} \tan(\frac{\pi} 3 - \alpha) \tan(\frac{\pi} 3 + \alpha)
  4. tan(α+β+γ)=tanα+tanβ+tanγtanαtanβtanγ1tanαtanβtanβtanγtanγtanα\tan{(\alpha + \beta + \gamma)} = \cfrac{\tan{\alpha}+ \tan{\beta} + \tan{\gamma} - \tan{\alpha} \tan{\beta} \tan{\gamma}}{1 - \tan{\alpha}\tan{\beta} - \tan{\beta}\tan{\gamma} - \tan{\gamma}\tan{\alpha}}
  5. k=0nsin(α+2kd)=sin((n+1)d)sin(α+nd)sind\sum_{k=0}^{n} \sin{(\alpha+ 2kd)} = \cfrac {\sin{((n+1)d)} \cdot \sin{(\alpha + nd)}} {\sin{d}}
  6. k=0ncos(α+2kd)=sin((n+1)d)cos(α+nd)sind\sum_{k=0}^{n} \cos{(\alpha+ 2kd)} = \cfrac {\sin{((n+1)d)} \cdot \cos{(\alpha + nd)}} {\sin{d}}
  7. arcsin(x)=arcsin(x)\arcsin(-x) = - \arcsin(x)arccos(x)=πarccos(x)\arccos(-x) = \pi - \arccos(x)x[1,1]x \in [-1,1]
  8. arctan(x)=arctan(x)\arctan(-x) = - \arctan(x)arccot(x)=πarccot(x)arccot(-x) = \pi - arccot(x)xRx \in \mathbb{R}
  9. arcsinx+arccosx=π2\arcsin{x} + \arccos{x} = \frac \pi 2x[1,1]x\in [-1,1]
  10. arctanx+arccotx=π2\arctan{x} + arccot{x} = \frac \pi 2xRx\in \mathbb{R}

3 三角形中的等式

tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C
cotAcotB+cotBcotC+cotCcotA=1\cot {A} \cot B + \cot B \cot C + \cot C \cot A = 1
sin2A+sin2B+sin2C=2(1+cosAcosBcosC)\sin^2 A + \sin^2 B + \sin^2 C = 2(1+ \cos A \cos B \cos C)
cos2A+cos2B+cos2C=12cosAcosBcosC\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2 \cos A \cos B \cos C
cotA+cotBtanA+tanB+cotB+cotCtanB+tanC+cotC+cotAtanC+tanA=1\cfrac {\cot A + \cot B} {\tan A + \tan B} + \cfrac {\cot B + \cot C} {\tan B + \tan C} + \cfrac {\cot C + \cot A} {\tan C + \tan A} = 1

4 三角形中的几个定理

ABC\triangle ABC 的边长为 a,b,ca, b, c,所对的角为 A,B,CA, B, Cr,Rr, R 分别为其内切圆半径与外接圆半径,p=12(a+b+c)p = \frac 1 2 (a + b+ c) 为半周长,SS 为其面积,则:

  1. 正弦定理:

asinA=bsinB=csinC=2R\frac {a} {\sin{A}} = \frac {b} {\sin{B}} = \frac {c} {\sin{C}} = 2R

  1. 余弦定理:

a2=b2+c22bccosAa^2 = b^2 + c^2 - 2bc \cos A
b2=c2+a22cacosBb^2 = c^2 + a^2 - 2ca \cos B
c2=a2+b22abcosCc^2 = a^2 + b^2 - 2ab \cos C

  1. 射影定理:

a=bcosC+ccosBa = b \cos C + c \cos B

b=ccosA+acosCb = c \cos A + a \cos C

c=acosB+bcosAc = a \cos B + b \cos A

  1. 欧拉(Euler)定理:

OI2=R22RrOI^2 = R^2 - 2Rr,其中 O,IO, I 分别为 ABC\triangle ABC 的外心与内心。

  1. 半角公式:

sinA2=(pb)(pc)bc\sin{\cfrac A 2} = \sqrt{\cfrac{(p-b)(p-c)}{bc}}
cosA2=p(pa)bc\cos{\cfrac A 2} = \sqrt{\cfrac{p(p-a)}{bc}}

  1. 几个等式:

rR=4sinA2sinB2sinC2=cosA+cosB+cosC1\cfrac r R = 4 \sin{\cfrac A 2} \sin{\cfrac B 2} \sin{\cfrac C 2} = \cos A + \cos B + \cos C - 1

raR=4sinA2cosB2cosC2\cfrac {r_a} R = 4 \sin{\cfrac A 2} \cos{\cfrac B 2} \cos{\cfrac C 2}

其中 rar_a 为角 A\angle A 所对应的旁切圆半径。

  1. 面积公式:

S=12absinC=rpS = \frac 1 2 ab \sin C = rp
S=p(pa)(pb)(pc)=2R2sinAsinBsinCS = \sqrt{p(p-a)(p-b)(p-c)} = 2R^2 \sin A \sin B \sin C

S=abc4R=12R2(sin2A+sin2B+sin2C)S = \cfrac {abc} {4R} = \frac 1 2 R^2 (\sin{2A} + \sin{2B}+ \sin{2C})

S=a2sinBsinC2sin(B+C)S = \cfrac{a^2 \sin B \sin C}{2 \sin(B+C)}


文章作者: xinetzone
版权声明: 本博客所有文章除特别声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 xinetzone !
评论

Related Issues not found

Please contact @xinetzone to initialize the comment