{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "wJcYs_ERTnnI" }, "outputs": [], "source": [ "##### Copyright 2021 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "HMUDt0CiUJk9", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "77z2OchJTk0l" }, "source": [ "# 从 Estimator 迁移到 Keras API\n", "\n", "\n", " \n", " \n", " \n", " \n", "
在 TensorFlow.org 上查看 在 Google Colab 运行\n", " 在 Github 上查看源代码\n", " 下载笔记本
" ] }, { "cell_type": "markdown", "metadata": { "id": "meUTrR4I6m1C" }, "source": [ "本指南演示了如何从 TensorFlow 1 的 `tf.estimator.Estimator` API 迁移到 TensorFlow 2 的 `tf.keras` API。首先,您将使用 `tf.estimator.Estimator` 设置并运行一个用于训练和评估的基本模型。然后,您将使用 `tf.keras` API 在 TensorFlow 2 中执行对应步骤。此外,您还将了解如何通过子类化 `tf.keras.Model` 和使用 `tf.GradientTape` 来自定义训练步骤。\n", "\n", "- 在 TensorFlow 1 中,可以使用高级 `tf.estimator.Estimator` API 训练和评估模型,以及执行推断和保存模型(用于提供)。\n", "- 在 TensorFlow 2 中,使用 Keras API 执行上述任务,例如[模型构建](https://tensorflow.google.cn/guide/keras/custom_layers_and_models)、梯度应用、[训练](https://tensorflow.google.cn/guide/keras/customizing_what_happens_in_fit)、评估和预测。\n", "\n", "(要将模型/检查点保存工作流迁移到 TensorFlow 2,请查看 [SavedModel](saved_model.ipynb) 和[检查点](checkpoint_saved.ipynb)迁移指南。)" ] }, { "cell_type": "markdown", "metadata": { "id": "YdZSoIXEbhg-" }, "source": [ "## 安装\n", "\n", "从导入和一个简单的数据集开始:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "iE0vSfMXumKI", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "import tensorflow as tf\n", "import tensorflow.compat.v1 as tf1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "m7rnGxsXtDkV", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "features = [[1., 1.5], [2., 2.5], [3., 3.5]]\n", "labels = [[0.3], [0.5], [0.7]]\n", "eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]\n", "eval_labels = [[0.8], [0.9], [1.]]" ] }, { "cell_type": "markdown", "metadata": { "id": "4uXff1BEssdE" }, "source": [ "## TensorFlow 1:使用 tf.estimator.Estimator 进行训练和评估\n", "\n", "此示例展示了如何在 TensorFlow 1 中使用 `tf.estimator.Estimator` 执行训练和评估。\n", "\n", "首先定义几个函数:训练数据的输入函数,评估数据的评估输入函数,以及告知 `Estimator` 如何使用特征和标签定义训练运算的模型函数:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "lqe9obf7suIj", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "def _input_fn():\n", " return tf1.data.Dataset.from_tensor_slices((features, labels)).batch(1)\n", "\n", "def _eval_input_fn():\n", " return tf1.data.Dataset.from_tensor_slices(\n", " (eval_features, eval_labels)).batch(1)\n", "\n", "def _model_fn(features, labels, mode):\n", " logits = tf1.layers.Dense(1)(features)\n", " loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)\n", " optimizer = tf1.train.AdagradOptimizer(0.05)\n", " train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())\n", " return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)" ] }, { "cell_type": "markdown", "metadata": { "id": "44bf417bf9c0" }, "source": [ "实例化您的 `Estimator`,并训练模型:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "922720812527", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "estimator = tf1.estimator.Estimator(model_fn=_model_fn)\n", "estimator.train(_input_fn)" ] }, { "cell_type": "markdown", "metadata": { "id": "17c9933c2d89" }, "source": [ "使用评估集评估程序:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HsOpjW5plH9Q", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "estimator.evaluate(_eval_input_fn)" ] }, { "cell_type": "markdown", "metadata": { "id": "KEmzBjfnsxwT" }, "source": [ "## TensorFlow 2:使用内置 Keras 方法进行训练和评估\n", "\n", "此示例演示了如何在 TensorFlow 2 中使用 `Model.fit` 和 `Model.evaluate` 执行训练和评估。(可以在[使用内置方法进行训练和评估](https://tensorflow.google.cn/guide/keras/train_and_evaluate)指南中了解详情。)\n", "\n", "- 首先使用 `tf.data.Dataset` API 准备数据集流水线。\n", "- 使用一个线性 (`tf.keras.layers.Dense`) 层定义一个简单的 Keras [序贯](https://tensorflow.google.cn/guide/keras/sequential_model)模型。\n", "- 实例化一个 Adagrad 优化器 (`tf.keras.optimizers.Adagrad`)。\n", "- 通过将 `optimizer` 变量和均方差(`\"mse\"`)损失传递给 `Model.compile` 来配置模型进行训练。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "atVciNgPs0fw", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)\n", "eval_dataset = tf.data.Dataset.from_tensor_slices(\n", " (eval_features, eval_labels)).batch(1)\n", "\n", "model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])\n", "optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)\n", "\n", "model.compile(optimizer=optimizer, loss=\"mse\")" ] }, { "cell_type": "markdown", "metadata": { "id": "ed17a6291959" }, "source": [ "这样,您就可以通过调用 `Model.fit` 来训练模型了:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "a0b732534501", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "model.fit(dataset)" ] }, { "cell_type": "markdown", "metadata": { "id": "74767288a2ea" }, "source": [ "最后,使用 `Model.evaluate` 评估模型:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Kip65sYBlKiu", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "model.evaluate(eval_dataset, return_dict=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "BuVYN0CHs5sD" }, "source": [ "## TensorFlow 2:使用自定义训练步骤和内置 Keras 方法进行训练和评估" ] }, { "cell_type": "markdown", "metadata": { "id": "gHx_RUL8xcJ3" }, "source": [ "在 TensorFlow 2 中,还可以使用 `tf.GradientTape` 编写自己的自定义训练步骤函数来执行前向和后向传递,同时仍然利用内置的训练支持,例如 `tf.keras.callbacks.Callback` 和 `tf.distribute.Strategy`。(在[自定义 Model.fit 的功能](https://tensorflow.google.cn/guide/keras/customizing_what_happens_in_fit)和[从头开始编写自定义训练循环](https://tensorflow.google.cn/guide/keras/writing_a_training_loop_from_scratch)中了解详情。)\n", "\n", "在此示例中,首先通过子类化重写 `Model.train_step` 的 `tf.keras.Sequential` 来创建自定义 `tf.keras.Model`。(详细了解如何[子类化 tf.keras.Model](https://tensorflow.google.cn/guide/keras/custom_layers_and_models))。在该类中,定义一个自定义 `train_step` 函数,此函数在一个训练步骤中为每批次数据执行前向传递和后向传递。\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "rSz_y0zOs8h2", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "class CustomModel(tf.keras.Sequential):\n", " \"\"\"A custom sequential model that overrides `Model.train_step`.\"\"\"\n", "\n", " def train_step(self, data):\n", " batch_data, labels = data\n", "\n", " with tf.GradientTape() as tape:\n", " predictions = self(batch_data, training=True)\n", " # Compute the loss value (the loss function is configured\n", " # in `Model.compile`).\n", " loss = self.compiled_loss(labels, predictions)\n", "\n", " # Compute the gradients of the parameters with respect to the loss.\n", " gradients = tape.gradient(loss, self.trainable_variables)\n", " # Perform gradient descent by updating the weights/parameters.\n", " self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))\n", " # Update the metrics (includes the metric that tracks the loss).\n", " self.compiled_metrics.update_state(labels, predictions)\n", " # Return a dict mapping metric names to the current values.\n", " return {m.name: m.result() for m in self.metrics}" ] }, { "cell_type": "markdown", "metadata": { "id": "ee7c4f94d69b" }, "source": [ "接下来,和之前一样:\n", "\n", "- 使用 `tf.data.Dataset` 准备数据集流水线。\n", "- 使用一个 `tf.keras.layers.Dense` 层定义一个简单的模型。\n", "- 实例化 Adagrad (`tf.keras.optimizers.Adagrad`)\n", "- 使用 `Model.compile` 配置用于训练的模型,同时使用均方差(`\"mse\"`)作为损失函数。" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "01fcc2b1292c", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)\n", "eval_dataset = tf.data.Dataset.from_tensor_slices(\n", " (eval_features, eval_labels)).batch(1)\n", "\n", "model = CustomModel([tf.keras.layers.Dense(1)])\n", "optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)\n", "\n", "model.compile(optimizer=optimizer, loss=\"mse\")" ] }, { "cell_type": "markdown", "metadata": { "id": "844543802ff5" }, "source": [ "调用 `Model.fit` 以训练模型:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "211be3620765", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "model.fit(dataset)" ] }, { "cell_type": "markdown", "metadata": { "id": "c93b9d6fc9d7" }, "source": [ "最后,使用 `Model.evaluate` 评估程序:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "nYO2wI1SlNCG", "vscode": { "languageId": "python" } }, "outputs": [], "source": [ "model.evaluate(eval_dataset, return_dict=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "e9b5c9a4747b" }, "source": [ "## 后续步骤\n", "\n", "您可能会发现有用的其他 Keras 资源:\n", "\n", "- 指南:[使用内置方法进行训练和评估](https://tensorflow.google.cn/guide/keras/train_and_evaluate)\n", "- 指南:[自定义 Model.fit 的功能](https://tensorflow.google.cn/guide/keras/customizing_what_happens_in_fit)\n", "- 指南:[从头开始编写训练循环](https://tensorflow.google.cn/guide/keras/writing_a_training_loop_from_scratch)\n", "- 指南:[通过子类化创建新的 Keras 层和模型](https://tensorflow.google.cn/guide/keras/custom_layers_and_models)\n", "\n", "以下指南有助于从 `tf.estimator` API 迁移分布策略工作流:\n", "\n", "- [从 TPUEstimator 迁移到 TPUStrategy](tpu_estimator.ipynb)\n", "- [迁移单工作进程多 GPU 训练](mirrored_strategy.ipynb)\n", "- [迁移多工作进程 CPU/GPU 训练](multi_worker_cpu_gpu_training.ipynb)" ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "migrating_estimator.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }