torch.ao.quantization.observer.MinMaxObserver#
- class torch.ao.quantization.observer.MinMaxObserver(dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=False, quant_min=None, quant_max=None, factory_kwargs=None, memoryless=False)[源代码]#
Observer module for computing the quantization parameters based on the running min and max values.
This observer uses the tensor min/max statistics to compute the quantization parameters. The module records the running minimum and maximum of incoming tensors, and uses this statistic to compute the quantization parameters.
- 参数
dtype – Quantized data type
qscheme – Quantization scheme to be used
reduce_range – Reduces the range of the quantized data type by 1 bit
quant_min – Minimum quantization value. If unspecified, it will follow the 8-bit setup.
quant_max – Maximum quantization value. If unspecified, it will follow the 8-bit setup.
memoryless – Boolean that controls whether observer removes old data when a new input is seen. This is most useful for simulating dynamic quantization, especially during QAT.
Given running min/max as \(x_\text{min}\) and \(x_\text{max}\), scale \(s\) and zero point \(z\) are computed as:
The running minimum/maximum \(x_\text{min/max}\) is computed as:
\[\begin{split}\begin{array}{ll} x_\text{min} &= \begin{cases} \min(X) & \text{if~}x_\text{min} = \text{None} \\ \min\left(x_\text{min}, \min(X)\right) & \text{otherwise} \end{cases}\\ x_\text{max} &= \begin{cases} \max(X) & \text{if~}x_\text{max} = \text{None} \\ \max\left(x_\text{max}, \max(X)\right) & \text{otherwise} \end{cases}\\ \end{array}\end{split}\]where \(X\) is the observed tensor.
The scale \(s\) and zero point \(z\) are then computed as:
\[\begin{split}\begin{aligned} \text{if Symmetric:}&\\ &s = 2 \max(|x_\text{min}|, x_\text{max}) / \left( Q_\text{max} - Q_\text{min} \right) \\ &z = \begin{cases} 0 & \text{if dtype is qint8} \\ 128 & \text{otherwise} \end{cases}\\ \text{Otherwise:}&\\ &s = \left( x_\text{max} - x_\text{min} \right ) / \left( Q_\text{max} - Q_\text{min} \right ) \\ &z = Q_\text{min} - \text{round}(x_\text{min} / s) \end{aligned}\end{split}\]where \(Q_\text{min}\) and \(Q_\text{max}\) are the minimum and maximum of the quantized data type.
警告
dtype
can only taketorch.qint8
ortorch.quint8
.备注
If the running minimum equals to the running maximum, the scale and zero_point are set to 1.0 and 0.