torch.nn.quantized.modules.functional_modules 源代码

from typing import List

import torch
from torch import Tensor
from torch._ops import ops

[文档]class FloatFunctional(torch.nn.Module): r"""State collector class for float operations. The instance of this class can be used instead of the ``torch.`` prefix for some operations. See example usage below. .. note:: This class does not provide a ``forward`` hook. Instead, you must use one of the underlying functions (e.g. ``add``). Examples:: >>> f_add = FloatFunctional() >>> a = torch.tensor(3.0) >>> b = torch.tensor(4.0) >>> f_add.add(a, b) # Equivalent to ``torch.add(a, b)`` Valid operation names: - add - cat - mul - add_relu - add_scalar - mul_scalar """ def __init__(self): super(FloatFunctional, self).__init__() self.activation_post_process = torch.nn.Identity() def forward(self, x): raise RuntimeError("FloatFunctional is not intended to use the " + "'forward'. Please use the underlying operation") r"""Operation equivalent to ``torch.add(Tensor, Tensor)``""" def add(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.add(Tensor, float)``""" def add_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.add(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.mul(Tensor, Tensor)``""" def mul(self, x: Tensor, y: Tensor) -> Tensor: r = torch.mul(x, y) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.mul(Tensor, float)``""" def mul_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.mul(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.cat``""" def cat(self, x: List[Tensor], dim: int = 0) -> Tensor: r = torch.cat(x, dim=dim) r = self.activation_post_process(r) return r r"""Operation equivalent to ``relu(torch.add(x,y))``""" def add_relu(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) r = torch.nn.functional.relu(r) r = self.activation_post_process(r) return r
[文档]class FXFloatFunctional(torch.nn.Module): r""" module to replace FloatFunctional module before FX graph mode quantization, since activation_post_process will be inserted in top level module directly Valid operation names: - add - cat - mul - add_relu - add_scalar - mul_scalar """ def forward(self, x): raise RuntimeError("FloatFunctional is not intended to use the " + "'forward'. Please use the underlying operation") r"""Operation equivalent to ``torch.add(Tensor, Tensor)``""" def add(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) return r r"""Operation equivalent to ``torch.add(Tensor, float)``""" def add_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.add(x, y) return r r"""Operation equivalent to ``torch.mul(Tensor, Tensor)``""" def mul(self, x: Tensor, y: Tensor) -> Tensor: r = torch.mul(x, y) return r r"""Operation equivalent to ``torch.mul(Tensor, float)``""" def mul_scalar(self, x: Tensor, y: float) -> Tensor: r = torch.mul(x, y) return r r"""Operation equivalent to ``torch.cat``""" def cat(self, x: List[Tensor], dim: int = 0) -> Tensor: r = torch.cat(x, dim=dim) return r r"""Operation equivalent to ``relu(torch.add(x,y))``""" def add_relu(self, x: Tensor, y: Tensor) -> Tensor: r = torch.add(x, y) r = torch.nn.functional.relu(r) return r
[文档]class QFunctional(torch.nn.Module): r"""Wrapper class for quantized operations. The instance of this class can be used instead of the ``torch.ops.quantized`` prefix. See example usage below. .. note:: This class does not provide a ``forward`` hook. Instead, you must use one of the underlying functions (e.g. ``add``). Examples:: >>> q_add = QFunctional() >>> a = torch.quantize_per_tensor(torch.tensor(3.0), 1.0, 0, torch.qint32) >>> b = torch.quantize_per_tensor(torch.tensor(4.0), 1.0, 0, torch.qint32) >>> q_add.add(a, b) # Equivalent to ``torch.ops.quantized.add(a, b, 1.0, 0)`` Valid operation names: - add - cat - mul - add_relu - add_scalar - mul_scalar """ def __init__(self): super(QFunctional, self).__init__() self.scale = 1.0 self.zero_point = 0 self.activation_post_process = torch.nn.Identity() def _save_to_state_dict(self, destination, prefix, keep_vars): super(QFunctional, self)._save_to_state_dict(destination, prefix, keep_vars) destination[prefix + 'scale'] = torch.tensor(self.scale) destination[prefix + 'zero_point'] = torch.tensor(self.zero_point) def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): self.scale = float(state_dict.pop(prefix + 'scale')) self.zero_point = int(state_dict.pop(prefix + 'zero_point')) super(QFunctional, self)._load_from_state_dict(state_dict, prefix, local_metadata, False, missing_keys, unexpected_keys, error_msgs) def _get_name(self): return 'QFunctional' def extra_repr(self): return 'scale={}, zero_point={}'.format( self.scale, self.zero_point ) def forward(self, x): raise RuntimeError("Functional is not intended to use the " + "'forward'. Please use the underlying operation") r"""Operation equivalent to ``torch.ops.quantized.add``""" def add(self, x: Tensor, y: Tensor) -> Tensor: r = ops.quantized.add(x, y, scale=self.scale, zero_point=self.zero_point) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.ops.quantized.add(Tensor, float)``""" def add_scalar(self, x: Tensor, y: float) -> Tensor: r = ops.quantized.add_scalar(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.ops.quantized.mul(Tensor, Tensor)``""" def mul(self, x: Tensor, y: Tensor) -> Tensor: r = ops.quantized.mul(x, y, scale=self.scale, zero_point=self.zero_point) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.ops.quantized.mul(Tensor, float)``""" def mul_scalar(self, x: Tensor, y: float) -> Tensor: r = ops.quantized.mul_scalar(x, y) # Note: this operation is not observed because the observation is not # needed for the quantized op. return r r"""Operation equivalent to ``torch.ops.quantized.cat``""" def cat(self, x: List[Tensor], dim: int = 0) -> Tensor: r = ops.quantized.cat(x, scale=self.scale, zero_point=self.zero_point, dim=dim) r = self.activation_post_process(r) return r r"""Operation equivalent to ``torch.ops.quantized.add_relu``""" def add_relu(self, x: Tensor, y: Tensor) -> Tensor: r = ops.quantized.add_relu(x, y, scale=self.scale, zero_point=self.zero_point) r = self.activation_post_process(r) return r @classmethod def from_float(cls, mod): assert type(mod) == FloatFunctional,\ "QFunctional.from_float expects an instance of FloatFunctional" scale, zero_point = mod.activation_post_process.calculate_qparams() new_mod = QFunctional() new_mod.scale = float(scale) new_mod.zero_point = int(zero_point) return new_mod