runner 源代码

from __future__ import annotations
import time
from IPython import display
from matplotlib import pyplot as plt
import numpy as np


def use_svg_display():
    """Use the svg format to display a plot in Jupyter.

    Defined in :numref:`sec_calculus`"""
    display.set_matplotlib_formats('svg')


def set_figsize(figsize=(3.5, 2.5)):
    """Set the figure size for matplotlib.

    Defined in :numref:`sec_calculus`"""
    use_svg_display()
    plt.rcParams['figure.figsize'] = figsize


def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    """Set the axes for matplotlib.

    Defined in :numref:`sec_calculus`"""
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()


def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
         ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    """Plot data points.

    Defined in :numref:`sec_calculus`"""
    if legend is None:
        legend = []

    set_figsize(figsize)
    axes = axes if axes else plt.gca()

    # Return True if `X` (tensor or list) has 1 axis
    def has_one_axis(X):
        return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
                and not hasattr(X[0], "__len__"))

    if has_one_axis(X):
        X = [X]
    if Y is None:
        X, Y = [[]] * len(X), X
    elif has_one_axis(Y):
        Y = [Y]
    if len(X) != len(Y):
        X = X * len(Y)
    axes.cla()
    for x, y, fmt in zip(X, Y, fmts):
        if len(x):
            axes.plot(x, y, fmt)
        else:
            axes.plot(y, fmt)
    set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)


[文档]class Timer: """Record multiple running times.""" def __init__(self): """Defined in :numref:`subsec_linear_model`""" self.times = [] self.start() def start(self): """Start the timer.""" self.tik = time.time() def stop(self): """Stop the timer and record the time in a list.""" self.times.append(time.time() - self.tik) return self.times[-1] def avg(self): """Return the average time.""" return sum(self.times) / len(self.times) def sum(self): """Return the sum of time.""" return sum(self.times) def cumsum(self): """Return the accumulated time.""" return np.array(self.times).cumsum().tolist()
[文档]class Accumulator: """For accumulating sums over `n` variables.""" def __init__(self, n): """Defined in :numref:`sec_softmax_scratch`""" self.data = [0.0] * n def add(self, *args): self.data = [a + float(b) for a, b in zip(self.data, args)] def reset(self): self.data = [0.0] * len(self.data) def __getitem__(self, idx): return self.data[idx]
[文档]class Animator: """For plotting data in animation.""" def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None, ylim=None, xscale='linear', yscale='linear', fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1, figsize=(3.5, 2.5)): """Defined in :numref:`sec_softmax_scratch`""" # Incrementally plot multiple lines if legend is None: legend = [] use_svg_display() self.fig, self.axes = plt.subplots(nrows, ncols, figsize=figsize) if nrows * ncols == 1: self.axes = [self.axes, ] # Use a lambda function to capture arguments self.config_axes = lambda: set_axes( self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend) self.X, self.Y, self.fmts = None, None, fmts def add(self, x, y): # Add multiple data points into the figure if not hasattr(y, "__len__"): y = [y] n = len(y) if not hasattr(x, "__len__"): x = [x] * n if not self.X: self.X = [[] for _ in range(n)] if not self.Y: self.Y = [[] for _ in range(n)] for i, (a, b) in enumerate(zip(x, y)): if a is not None and b is not None: self.X[i].append(a) self.Y[i].append(b) self.axes[0].cla() for x, y, fmt in zip(self.X, self.Y, self.fmts): self.axes[0].plot(x, y, fmt) self.config_axes() display.display(self.fig) display.clear_output(wait=True)
[文档]def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5): """Plot 多张图片 """ figsize = (num_cols * scale, num_rows * scale) _, axes = plt.subplots(num_rows, num_cols, figsize=figsize) axes = axes.flatten() for i, (ax, img) in enumerate(zip(axes, imgs)): ax.imshow(img) ax.axes.get_xaxis().set_visible(False) ax.axes.get_yaxis().set_visible(False) if titles: ax.set_title(titles[i]) return axes