mobile_net 源代码

from __future__ import annotations
import torch
from torch import nn
from torch.quantization import QuantStub, DeQuantStub


def _make_divisible(v, divisor, min_value=None):
    """
    这个函数取自原始的 tf repo。
    它确保所有层都有一个能被 8 整除的通道数
    从这里可以看到:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # 确保舍入的下降幅度不超过 10%。
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class ConvBNReLU(nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super().__init__(
            nn.Conv2d(in_planes, out_planes, kernel_size, stride,
                      padding, groups=groups, bias=False),
            nn.BatchNorm2d(out_planes, momentum=0.1),
            # 使用 ReLU 替换
            nn.ReLU(inplace=False)
        )


class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(round(inp * expand_ratio))
        self.use_res_connect = self.stride == 1 and inp == oup

        layers = []
        if expand_ratio != 1:
            # pw
            layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
        layers.extend([
            # dw
            ConvBNReLU(hidden_dim, hidden_dim,
                       stride=stride, groups=hidden_dim),
            # pw-linear
            nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
            nn.BatchNorm2d(oup, momentum=0.1),
        ])
        self.conv = nn.Sequential(*layers)
        # Replace torch.add with floatfunctional
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        if self.use_res_connect:
            return self.skip_add.add(x, self.conv(x))
        else:
            return self.conv(x)


[文档]class MobileNetV2(nn.Module): def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8): """ MobileNet V2 main class Args: num_classes (int): Number of classes width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount inverted_residual_setting: Network structure round_nearest (int): Round the number of channels in each layer to be a multiple of this number Set to 1 to turn off rounding """ super(MobileNetV2, self).__init__() block = InvertedResidual input_channel = 32 last_channel = 1280 if inverted_residual_setting is None: inverted_residual_setting = [ # t, c, n, s [1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2], [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2], [6, 320, 1, 1], ] # only check the first element, assuming user knows t,c,n,s are required if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: raise ValueError("inverted_residual_setting should be non-empty " "or a 4-element list, got {}".format(inverted_residual_setting)) # building first layer input_channel = _make_divisible( input_channel * width_mult, round_nearest) self.last_channel = _make_divisible( last_channel * max(1.0, width_mult), round_nearest) features = [ConvBNReLU(3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in inverted_residual_setting: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 features.append( block(input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers features.append(ConvBNReLU( input_channel, self.last_channel, kernel_size=1)) # make it nn.Sequential self.features = nn.Sequential(*features) self.quant = QuantStub() self.dequant = DeQuantStub() # building classifier self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(self.last_channel, num_classes), ) # weight initialization for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def forward(self, x): x = self.quant(x) x = self.features(x) x = x.mean([2, 3]) x = self.classifier(x) x = self.dequant(x) return x # Fuse Conv+BN and Conv+BN+Relu modules prior to quantization # This operation does not change the numerics def fuse_model(self): for m in self.modules(): if type(m) == ConvBNReLU: torch.quantization.fuse_modules( m, ['0', '1', '2'], inplace=True) if type(m) == InvertedResidual: for idx in range(len(m.conv)): if type(m.conv[idx]) == nn.Conv2d: torch.quantization.fuse_modules( m.conv, [str(idx), str(idx + 1)], inplace=True)