from __future__ import annotations
import os
from pathlib import Path
import torch
[文档]class AverageMeter:
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
[文档]def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
[文档]def evaluate(model, criterion, data_loader, neval_batches=-1):
model.eval()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
cnt = 0
with torch.no_grad():
for image, target in data_loader:
output = model(image)
_ = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
#print('.', end='')
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
if neval_batches == -1:
continue
else:
cnt += 1
if cnt >= neval_batches:
return top1, top5
return top1, top5
[文档]def load_model(model, model_file):
state_dict = torch.load(model_file)
model.load_state_dict(state_dict)
return model
def get_size_of_model(model_path):
'''获取模型的大小(MB)'''
return os.path.getsize(model_path)/1e6
[文档]def print_size_of_model(model, model_path="temp.p"):
torch.save(model.state_dict(), model_path)
print(f'模型大小:{get_size_of_model(model_path)} MB', )
os.remove('temp.p')
def train_one_epoch(model, criterion, optimizer, data_loader, device, ntrain_batches=-1):
model = model.to(device)
model.train()
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
avgloss = AverageMeter('Loss', '1.5f')
cnt = 0
for image, target in data_loader:
# start_time = time.time()
print('.', end='')
image, target = image.to(device), target.to(device)
output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(output, target, topk=(1, 5))
top1.update(acc1[0], image.size(0))
top5.update(acc5[0], image.size(0))
avgloss.update(loss, image.size(0))
if ntrain_batches == -1:
continue
else:
cnt += 1
if cnt >= ntrain_batches:
print('Loss', avgloss.avg)
print('Training: * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
.format(top1=top1, top5=top5))
return
print('Full imagenet train set: * Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
.format(top1=top1, top5=top5))
return